Difference between revisions of "2024 AMC 12A Problems/Problem 17"
(Redirected page to 2024 AMC 10A Problems/Problem 23) (Tag: New redirect) |
(Removed redirect to 2024 AMC 10A Problems/Problem 23) (Tag: Removed redirect) |
||
Line 1: | Line 1: | ||
− | + | ==Problem== | |
+ | Let <math>f(x)</math> be a nonzero continuous function such that <cmath>f\left(\sqrt{x^{2} + y^{2}}\right) = f(x)f(y)</cmath> for all real numbers <math>x</math> and <math>y</math>. If <math>f(2) \leq 2024</math>, then how many integers in the set <math>\{-20, -19, \cdots, 20\}</math> could be the value of <math>f(1)</math>? | ||
+ | |||
+ | <math>\textbf{(A)}~6\qquad\textbf{(B)}~7\qquad\textbf{(C)}~12\qquad\textbf{(D)}~13\qquad\textbf{(E)}~16</math> | ||
+ | |||
+ | ==Solution== | ||
+ | First, we observe that <math>f(x)</math> must be an even function because <math>f\left(\sqrt{x^{2} + y^{2}}\right) = f(-x)f(y) = f(x)f(y) and f(y) \neq 0</math>. We see that <math>f(x) = f(\lvert x \rvert) = f\left(\sqrt{\tfrac{x^{2}}{2} + \tfrac{x^{2}}{2}}\right) = f\left(\tfrac{x}{\sqrt{2}}\right)^{2} \geq 0</math>. But since <math>f</math> is nonzero, <math>f(x) > 0</math>. | ||
+ | |||
+ | Consider <math>(x, y) = (1, 1)</math>, which gives <math>f\left(\sqrt{1^{2} + 1^{2}}\right) = f\left(\sqrt{2}\right) = f(1)^{2}</math>. Combining this with <math>(x, y) = \left(\sqrt{2}, \sqrt{2}\right)</math>, we have <math>f\left(\sqrt{\left(\sqrt{2}\right)^{2} + \left(\sqrt{2}\right)^{2}}\right) = f(2) = f\left(\sqrt{2}\right)^{2} = f(1)^{4}</math>. | ||
+ | |||
+ | Therefore, <math>f(2) = f(1)^{4} \leq 2024</math>, and the only possible values for <math>f(1)</math> are the positive integers less than <math>\sqrt[4]{2024}</math>. Note that <math>6^{4} = 1296 < 2024</math> but <math>7^{4} = 2401 > 2024</math>, so the answer is <math>\boxed{\textbf{(A)}~6}</math>. | ||
+ | |||
+ | ==See also== | ||
+ | {{AMC12 box|year=2024|ab=A|num-b=16|num-a=18}} | ||
+ | {{MAA Notice}} |
Revision as of 21:43, 20 March 2025
Problem
Let be a nonzero continuous function such that
for all real numbers
and
. If
, then how many integers in the set
could be the value of
?
Solution
First, we observe that must be an even function because
. We see that
. But since
is nonzero,
.
Consider , which gives
. Combining this with
, we have
.
Therefore, , and the only possible values for
are the positive integers less than
. Note that
but
, so the answer is
.
See also
2024 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 16 |
Followed by Problem 18 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.