Difference between revisions of "2008 AMC 12A Problems/Problem 20"
(New page: ==Problem== Triangle <math>ABC</math> has <math>AC=3</math>, <math>BC=4</math>, and <math>AB=5</math>. Point <math>D</math> is on <math>\overline{AB}</math>, and <math>\overline{CD}</math>...) |
(moved from #21) |
||
| Line 3: | Line 3: | ||
<math>\textbf{(A)}\ \frac{1}{28}\left(10-\sqrt{2}\right) \qquad \textbf{(B)}\ \frac{3}{56}\left(10-\sqrt{2}\right) \qquad \textbf{(C)}\ \frac{1}{14}\left(10-\sqrt{2}\right) \qquad \textbf{(D)}\ \frac{5}{56}\left(10-\sqrt{2}\right) \\ \textbf{(E)}\ \frac{3}{28}\left(10-\sqrt{2}\right)</math> | <math>\textbf{(A)}\ \frac{1}{28}\left(10-\sqrt{2}\right) \qquad \textbf{(B)}\ \frac{3}{56}\left(10-\sqrt{2}\right) \qquad \textbf{(C)}\ \frac{1}{14}\left(10-\sqrt{2}\right) \qquad \textbf{(D)}\ \frac{5}{56}\left(10-\sqrt{2}\right) \\ \textbf{(E)}\ \frac{3}{28}\left(10-\sqrt{2}\right)</math> | ||
| + | |||
| + | == Solution == | ||
| + | <center><asy> | ||
| + | import olympiad; | ||
| + | size(300); | ||
| + | defaultpen(0.8); | ||
| + | pair C=(0,0),A=(0,3),B=(4,0),D=(4-2.28571,1.71429); | ||
| + | pair O=incenter(A,C,D), P=incenter(B,C,D); | ||
| + | picture p = new picture; | ||
| + | draw(p,Circle(C,0.2)); draw(p,Circle(B,0.2)); | ||
| + | clip(p,B--C--D--cycle); | ||
| + | add(p); | ||
| + | draw(A--B--C--D--C--cycle); | ||
| + | draw(incircle(A,C,D)); | ||
| + | draw(incircle(B,C,D)); | ||
| + | dot(O);dot(P); | ||
| + | label("\(A\)",A,W); | ||
| + | label("\(B\)",B,E); | ||
| + | label("\(C\)",C,W); | ||
| + | label("\(D\)",D,NE); | ||
| + | label("\(O_A\)",O,W); | ||
| + | label("\(O_B\)",P,W); | ||
| + | label("\(3\)",(A+C)/2,W); | ||
| + | label("\(4\)",(B+C)/2,S); | ||
| + | label("\(\frac{15}{7}\)",(A+D)/2,NE); | ||
| + | label("\(\frac{20}{7}\)",(B+D)/2,NE); | ||
| + | label("\(45^{\circ}\)",(.2,.1),E); | ||
| + | label("\(\sin \theta = \frac{3}{5}\)",B-(.2,-.1),W); | ||
| + | </asy></center> | ||
| + | |||
| + | By the [[Angle Bisector Theorem]], | ||
| + | <cmath>\frac{BD}{4} = \frac{5-BD}{3} \Longrightarrow BD = \frac{20}7</cmath> | ||
| + | By [[Law of Sines]] on <math>\triangle BCD</math>, | ||
| + | <cmath>\frac{BD}{\sin 45^{\circ}} = \frac{CD}{\sin \angle B} \Longrightarrow \frac{20/7}{\sqrt{2}/2} = \frac{CD}{3/5} \Longrightarrow CD=\frac{12\sqrt{2}}{7}</cmath> | ||
| + | Since the area of a triangle satisfies <math>[\triangle]=rs</math>, where <math>r = </math> the [[inradius]] and <math>s =</math> the [[semiperimeter]], we have | ||
| + | <cmath>\frac{r_A}{r_B} = \frac{[ACD] \cdot s_B}{[BCD] \cdot s_A}</cmath> | ||
| + | <!--Using any of various formulas for triangle area, we find the area <math>[BCD]</math> to be | ||
| + | <cmath>[BCD] = \frac{1}{2} (\sin \angle CBD) \cdot (BD) \cdot (CD) = \frac 12 \cdot \frac 35 \cdot \frac{20}{7} \cdot 4 = \frac{24}{7}</cmath> | ||
| + | and | ||
| + | <cmath>[ACD] = [ABC] - [BCD] = \frac 12 (3)(4) - \frac{24}{7} = \frac{18}{7}</cmath>--> | ||
| + | Since <math>\triangle ACD</math> and <math>\triangle BCD</math> share the [[altitude]] (to <math>\overline{AB}</math>), their areas are the ratio of their bases, or <cmath>\frac{[ACD]}{[BCD]} = \frac{AD}{BD} = \frac{3}{4}</cmath> | ||
| + | The semiperimeters are <math>s_A = \left({3 + \frac{15}{7} + \frac{12\sqrt{2}}{7}\right)\left/\right.2 = \frac{18+6\sqrt{2}}{7}</math> and <math>s_B = \frac{24+ 6\sqrt{2}}{7}</math>. Thus, | ||
| + | <cmath>\begin{align*} | ||
| + | \frac{r_A}{r_B} &= \frac{[ACD] \cdot s_B}{[BCD] \cdot s_A} = \frac{3}{4} \cdot \frac{(24+ 6\sqrt{2})/7}{(18+6\sqrt{2})/7} \\ | ||
| + | &= \frac{3(4+\sqrt{2})}{4(3+\sqrt{2})} \cdot \left(\frac{3-\sqrt{2}}{3-\sqrt{2}}\right) = \frac{3}{28}(10-\sqrt{2}) \Rightarrow \mathrm{(E)}\qquad \blacksquare \end{align*}</cmath> | ||
| + | |||
| + | ==See Also== | ||
| + | {{AMC12 box|year=2008|num-b=19|num-a=21|ab=A}} | ||
Revision as of 21:41, 19 February 2008
Problem
Triangle
has
,
, and
. Point
is on
, and
bisects the right angle. The inscribed circles of
and
have radii
and
, respectively. What is
?
Solution
![[asy] import olympiad; size(300); defaultpen(0.8); pair C=(0,0),A=(0,3),B=(4,0),D=(4-2.28571,1.71429); pair O=incenter(A,C,D), P=incenter(B,C,D); picture p = new picture; draw(p,Circle(C,0.2)); draw(p,Circle(B,0.2)); clip(p,B--C--D--cycle); add(p); draw(A--B--C--D--C--cycle); draw(incircle(A,C,D)); draw(incircle(B,C,D)); dot(O);dot(P); label("\(A\)",A,W); label("\(B\)",B,E); label("\(C\)",C,W); label("\(D\)",D,NE); label("\(O_A\)",O,W); label("\(O_B\)",P,W); label("\(3\)",(A+C)/2,W); label("\(4\)",(B+C)/2,S); label("\(\frac{15}{7}\)",(A+D)/2,NE); label("\(\frac{20}{7}\)",(B+D)/2,NE); label("\(45^{\circ}\)",(.2,.1),E); label("\(\sin \theta = \frac{3}{5}\)",B-(.2,-.1),W); [/asy]](http://latex.artofproblemsolving.com/f/0/0/f003e5fe565c49bade1dc1e2b332a46d1a084ca9.png)
By the Angle Bisector Theorem,
By Law of Sines on
,
Since the area of a triangle satisfies
, where
the inradius and
the semiperimeter, we have
Since
and
share the altitude (to
), their areas are the ratio of their bases, or
The semiperimeters are $s_A = \left({3 + \frac{15}{7} + \frac{12\sqrt{2}}{7}\right)\left/\right.2 = \frac{18+6\sqrt{2}}{7}$ (Error compiling LaTeX. Unknown error_msg) and
. Thus,
See Also
| 2008 AMC 12A (Problems • Answer Key • Resources) | |
| Preceded by Problem 19 |
Followed by Problem 21 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |