Difference between revisions of "1994 AJHSME Problems/Problem 25"
m |
(→Solution 2) |
||
| Line 23: | Line 23: | ||
== Solution 2 == | == Solution 2 == | ||
| − | <cmath>\underbrace{9999\cdots 99}_{94\text{ nines}} \cdot \underbrace{4444\cdots 44}_{94\text{ fours}} = (10^{94}-1)\cdot \underbrace{4444\cdots 44}_{94\text{ fours}} = \underbrace{444\cdots 4}_{94\text{ fours}} \underbrace{000\cdots 0}_{94\text{ zeros}} - \underbrace{4444\cdots 44}_{94\text{ fours}} = \underbrace{444\cdots 4}_{93\text{ fours}} 3 \underbrace{555\cdots 5}_{93\text{ | + | <cmath>\underbrace{9999\cdots 99}_{94\text{ nines}} \cdot \underbrace{4444\cdots 44}_{94\text{ fours}} = (10^{94}-1)\cdot \underbrace{4444\cdots 44}_{94\text{ fours}} = \underbrace{444\cdots 4}_{94\text{ fours}} \underbrace{000\cdots 0}_{94\text{ zeros}} - \underbrace{4444\cdots 44}_{94\text{ fours}} = \underbrace{444\cdots 4}_{93\text{ fours}} 3 \underbrace{555\cdots 5}_{93\text{ fives}}6</cmath> |
<cmath>4 \cdot 93 + 3 + 5 \cdot 93 + 6 = 9 \cdot 94 = \boxed{\text{(A)}\ 846}</cmath> | <cmath>4 \cdot 93 + 3 + 5 \cdot 93 + 6 = 9 \cdot 94 = \boxed{\text{(A)}\ 846}</cmath> | ||
Revision as of 09:31, 17 January 2025
Contents
Problem
Find the sum of the digits in the answer to
where a string of
nines is multiplied by a string of
fours.
Solution 1
Notice that:
and
and
So the sum of the digits of
9s times
4s is simply
(Try to find the proof that it works for all values of
~MATHWIZARD10).
Therefore the answer is
Solution 2
See Also
| 1994 AJHSME (Problems • Answer Key • Resources) | ||
| Preceded by Problem 24 |
Followed by Last Problem | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AJHSME/AMC 8 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.