|
|
Line 1: |
Line 1: |
| + | {{duplicate|[[2024 AMC 12A Problems/Problem 23|2024 AMC 12A #23]] and [[2024 AMC 10A Problems/Problem 25|2024 AMC 10A #25]]}} |
| + | |
| ==Problem== | | ==Problem== |
− | What is the value of <cmath>\tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {3\pi}{16} + \tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {5\pi}{16}+\tan^2 \frac {3\pi}{16} \cdot \tan^2 \frac {7\pi}{16}+\tan^2 \frac {5\pi}{16} \cdot \tan^2 \frac {7\pi}{16}?</cmath>
| + | In parallelogram <math>ABCD</math>, let <math>\omega</math> be the circle with diameter <math>\overline{AD}</math> and suppose <math>P</math> and <math>Q</math> are points on <math>\omega</math> such that both lines <math>BP</math> and <math>BQ</math> are tangent to <math>\omega</math>. If <math>BC = 8</math>, <math>BP = 3</math>, and line <math>PQ</math> bisects <math>\overline{CD}</math>, what is <math>AC^{2}</math>? |
− | | |
− | <math>\textbf{(A) } 28 \qquad \textbf{(B) } 68 \qquad \textbf{(C) } 70 \qquad \textbf{(D) } 72 \qquad \textbf{(E) } 84</math> | |
− | | |
− | ==Solution 1 (Trigonometric Identities)==
| |
− | | |
− | First, notice that
| |
− | | |
− | <cmath>\tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {3\pi}{16} + \tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {5\pi}{16}+\tan^2 \frac {3\pi}{16} \cdot \tan^2 \frac {7\pi}{16}+\tan^2 \frac {5\pi}{16} \cdot \tan^2 \frac {7\pi}{16}</cmath>
| |
− | | |
− | | |
− | <cmath>=(\tan^2\frac{\pi}{16}+\tan^2 \frac{7\pi}{16})(\tan^2\frac{3\pi}{16}+\tan^2 \frac{5\pi}{16})</cmath>
| |
− | | |
− | | |
− | Here, we make use of the fact that
| |
− | | |
− | <cmath>\tan^2 x+\tan^2 (\frac{\pi}{2}-x)</cmath>
| |
− | <cmath>=(\tan x+\tan (\frac{\pi}{2}-x))^2-2</cmath>
| |
− | <cmath>=\left(\frac{\sin x}{\cos x}+\frac{\sin (\frac{\pi}{2}-x)}{\cos (\frac{\pi}{2}-x)}\right)^2-2</cmath>
| |
− | <cmath>=\left(\frac{\sin x \cos (\frac{\pi}{2}-x)+\sin (\frac{\pi}{2}-x) \cos x}{\cos x \cos (\frac{\pi}{2}-x)}\right)^2-2</cmath>
| |
− | <cmath>=\left(\frac{\sin \frac{\pi}{2}}{\cos x \cos (\frac{\pi}{2}-x)}\right)^2-2</cmath>
| |
− | <cmath>=\left(\frac{1}{\cos x \sin x}\right)^2-2</cmath>
| |
− | <cmath>=\left(\frac{2}{\sin 2x}\right)^2-2</cmath>
| |
− | <cmath>=\frac{4}{\sin^2 2x}-2</cmath>
| |
− | | |
− | Hence,
| |
− | | |
− | <cmath>(\tan^2\frac{\pi}{16}+\tan^2 \frac{7\pi}{16})(\tan^2\frac{3\pi}{16}+\tan^2 \frac{4\pi}{16})</cmath>
| |
− | <cmath>=\left(\frac{4}{\sin^2 \frac{\pi}{8}}-2\right)\left(\frac{4}{\sin^2 \frac{3\pi}{8}}-2\right)</cmath>
| |
− | | |
− | Note that
| |
− | | |
− | <cmath>\sin^2 \frac{\pi}{8}=\frac{1-\cos \frac{\pi}{4}}{2}=\frac{2-\sqrt{2}}{4}</cmath>
| |
− |
| |
− | | |
− | <cmath>\sin^2 \frac{3\pi}{8}=\frac{1-\cos \frac{3\pi}{4}}{2}=\frac{2+\sqrt{2}}{4}</cmath>
| |
− | | |
− | Hence,
| |
− | | |
− | <cmath>\left(\frac{4}{\sin^2 \frac{\pi}{8}}-2\right)\left(\frac{4}{\sin^2 \frac{3\pi}{8}}-2\right)</cmath>
| |
− | | |
− | <cmath>=\left(\frac{16}{2-\sqrt{2}}-2\right)\left(\frac{16}{2+\sqrt{2}}-2\right)</cmath>
| |
− | | |
− | <cmath>=(14+8\sqrt{2})(14-8\sqrt{2})</cmath>
| |
− | | |
− | <cmath>=68</cmath>
| |
− | | |
− | Therefore, the answer is <math>\fbox{\textbf{(B) } 68}</math>.
| |
− | | |
− | ~tsun26
| |
− | | |
− | ==Solution 2 (Another Identity)==
| |
− | | |
− | First, notice that
| |
− | | |
− | <cmath>\tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {3\pi}{16} + \tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {5\pi}{16}+\tan^2 \frac {3\pi}{16} \cdot \tan^2 \frac {7\pi}{16}+\tan^2 \frac {5\pi}{16} \cdot \tan^2 \frac {7\pi}{16}</cmath>
| |
− | | |
− | | |
− | <cmath>=(\tan^2\frac{\pi}{16}+\tan^2 \frac{7\pi}{16})(\tan^2\frac{3\pi}{16}+\tan^2 \frac{5\pi}{16})</cmath>
| |
− | | |
− | | |
− | Here, we make use of the fact that
| |
− | | |
− | <cmath>
| |
− | \begin{align*}
| |
− | \tan^2 x+\tan^2 (\frac{\pi}{2}-x) &= (\tan x - \tan (\frac{\pi}{2} - x))^2 + 2\\
| |
− | &= (\tan (\frac{\pi}{2} - 2x) \cdot (1 + \tan x \tan (\frac{\pi}{2} - x))^2 + 2~~~~(\mathrm{difference~of~two~tan})\\
| |
− | &= (\tan (\frac{\pi}{2} - 2x) \cdot (1 + 1))^2 + 2\\
| |
− | &= 4\tan^2 (\frac{\pi}{2} - 2x) + 2
| |
− | \end{align*}
| |
− | </cmath>
| |
− | | |
− | Hence,
| |
− | | |
− | <cmath>
| |
− | \begin{align*}
| |
− | (\tan^2\frac{\pi}{16}+\tan^2 \frac{7\pi}{16})(\tan^2\frac{3\pi}{16}+\tan^2 \frac{5\pi}{16}) &= (4\tan^2 (\frac{\pi}{2} - \frac{\pi}{16} \cdot 2) + 2)(4\tan^2 (\frac{\pi}{2} - \frac{3\pi}{16} \cdot 2) + 2)\\
| |
− | &= (4\tan^2 \frac{3\pi}{8} + 2)(4\tan^2 \frac{\pi}{8} + 2)\\
| |
− | &= 16\tan^2 \frac{3\pi}{8} \cdot \tan^2 \frac{\pi}{8} + 8(\tan^2 \frac{3\pi}{8} + \tan^2 \frac{\pi}{8}) + 4\\
| |
− | &= 16 + 8(4\tan^2 (\frac{\pi}{2} - \frac{\pi}{8} \cdot 2) + 2) + 4\\
| |
− | &= 16 + 8(4\tan^2 \frac{\pi}{4} + 2) + 4\\
| |
− | &= 16 + 8(4 + 2) + 4\\
| |
− | &= 68
| |
− | \end{align*}
| |
− | </cmath>
| |
− | | |
− | Therefore, the answer is <math>\fbox{\textbf{(B) } 68}</math>.
| |
− | | |
− | ~[https://artofproblemsolving.com/wiki/index.php/User:Reda_mandymath reda_mandymath]
| |
− | | |
− | ==Solution 3 (Complex Numbers)==
| |
− | Let <math>\theta = \frac{\pi}{16}</math>. Then,
| |
− | <cmath>
| |
− | y = e^{8i\theta} = e^{\frac{\pi}{2} i} = (\cos \theta + i\sin \theta)^8 = 0 + i.
| |
− | </cmath>
| |
− | Expanding by using a binomial expansion,
| |
− | <cmath>
| |
− | \Re(y) = \cos^8 \theta - 28 \cos^6 \theta \sin^2 \theta + 70 \cos^4 \theta \sin^4 \theta - 28 \cos^2 \theta \sin^6 \theta + \sin^8\theta =0.
| |
− | </cmath>
| |
− | Divide by <math>\cos^8 \theta</math> and notice we can set <math>\frac{\sin \theta}{\cos \theta} = x</math> where <math>x = \tan(\theta)</math>. Then, define <math>f(x)</math> so that
| |
− | <cmath>
| |
− | f(x) = 1 - 28 x^2 + 70 x^4 - 28 x^6 + x^8.
| |
− | </cmath>
| |
− | | |
− | Notice that we can have <math>(\cos \theta_k + i \sin \theta_k)^8 = 0 \pm i</math> because we are only considering the real parts. We only have this when <math>k \equiv 1,3 \mod 4</math>, meaning <math>k \equiv 1 \mod 2</math>. This means that we have <math>k = 1,3,5,7,9,11,13,15</math> as unique roots (we get them from <math>k\theta \in [0,\pi]</math>) and by using the fact that <math>\tan(\pi - \theta) = -\tan \theta</math>, we get <cmath>x \in \left\{\tan \theta, -\tan \theta, \tan \left(3 \theta \right), -\tan \left(3 \theta \right), \tan \left(5 \theta \right), -\tan \left(5 \theta \right), \tan \left(7 \theta \right), -\tan \left(7 \theta \right) \right\} </cmath>
| |
− | Since we have a monic polynomial, by the Fundamental Theorem of Algebra,
| |
− | <cmath>f(x) = (x-\tan \theta)(x+\tan \theta) (x-\tan \left(3 \theta \right))(x+\tan \left(3 \theta \right)) (x-\tan \left(5 \theta \right))(x+\tan \left(5 \theta \right))(x-\tan\left(7 \theta \right))(x+\tan \left(7 \theta \right))</cmath>
| |
− | <cmath>f(x) = (x^2 - \tan^2 \theta)(x^2 - \tan^2 (3\theta))(x^2 - \tan^2 (5\theta))(x^2 - \tan^2 (7\theta))
| |
− | </cmath>
| |
− | Looking at the <math>x^4</math> term in the expansion for <math>f(x)</math> and using vietas gives us
| |
− | <cmath>
| |
− | \tan^2 \theta \tan^2 (3\theta) + \tan^2 \theta \tan^2 (5\theta) + \tan^2 \theta \tan^2 (7\theta) + \tan^2 (3\theta) \tan^2 (5\theta)
| |
− | </cmath>
| |
− | <cmath>
| |
− | + \tan^2 (3\theta) \tan^2 (7\theta) + \tan^2 (5\theta) \tan^2 (7\theta) = \frac{70}{1} = 70.
| |
− | </cmath>
| |
− | Since <math>\tan\left(\frac{\pi}{2} - \theta\right) = \cot \theta</math> and <math> \tan \theta \cot \theta = 1</math>
| |
− | <cmath>
| |
− | \tan^2 \theta \tan^2 (7\theta) = \tan^2 (3\theta) \tan^2 (5\theta) = 1.
| |
− | </cmath>
| |
− | Therefore
| |
− | <cmath>
| |
− | \tan^2 \theta \tan^2 (3\theta) + \tan^2 \theta \tan^2 (5\theta) + \tan^2 (3\theta) \tan^2 (7\theta) + \tan^2 (5\theta) \tan^2 (7\theta) + 2 = 70.
| |
− | </cmath>
| |
− | <cmath>
| |
− | \tan^2 \theta \tan^2 (3\theta) + \tan^2 \theta \tan^2 (5\theta) + \tan^2 (3\theta) \tan^2 (7\theta) + \tan^2 (5\theta) \tan^2 (7\theta) = \boxed{\textbf{(B) } 68}
| |
− | </cmath>
| |
− | | |
− | ~[https://artofproblemsolving.com/wiki/index.php/User:KEVIN_LIU KEVIN_LIU]
| |
| | | |
− | ==Solution 5 (Transformation)==
| + | <math>\textbf{(A)}~180\qquad\textbf{(B)}~181\qquad\textbf{(C)}~182\qquad\textbf{(D)}~183\qquad\textbf{(E)}~184</math> |
| | | |
− | Set x = <math>\pi/16</math> , 7x = <math>\pi/2</math> - x ,
| + | ==Solution 1== |
− | set C7 = <math>cos^2(7x)</math> , C5 = <math>cos^2(5x)</math>, C3 = <math>cos^2(3x)</math>, C= <math>cos^2(x)</math> , S2 = <math>sin^2(2x)</math> , S6 = <math>sin^2(6x), etc.</math>
| + | Let <math>M</math>, <math>O</math>, and <math>N</math> be the midpoints of <math>\overline{CD}</math>, <math>\overline{AD}</math>, and <math>\overline{AB}</math>, respectively. Let <math>\overline{PQ}</math> intersect <math>\overline{BO}</math> at <math>R</math> and note that the radius of <math>\omega</math> is <math>\tfrac{AD}{2} = \tfrac{8}{2} = 4</math>. The Pythagorean theorem applied to <math>\triangle BPO</math> gives <math>BO = 5</math>, and the similarity <math>\triangle BPR \sim \triangle BOP</math> implies <math>BR = \tfrac{BP^{2}}{BO} = \tfrac{9}{5}</math>. |
| | | |
− | First, notice that
| + | Let <math>\overline{MN}</math> intersect <math>\overline{BO}</math> at point <math>E</math>. Since <math>ABCD</math> is a parallelogram, <math>E</math> is the midpoint of <math>\overline{BO}</math> and <math>EN = \tfrac{AO}{2} = \tfrac{4}{2} = 2</math>. Because <math>MN = BC = 8</math>, we have <math>ME = 6</math> and <math>RE = BE - BR = \tfrac{5}{2} - \tfrac{9}{5} = \tfrac{7}{10}</math>. It follows that <cmath>\cos(\angle MEO) = \cos(\pi - \angle MER) = -\cos(\angle MER) = -\tfrac{7}{60}.</cmath> |
− | <cmath>\tan^2 x \cdot \tan^2 3x + \tan^2 3x \cdot \tan^2 5x+\tan^2 3x \cdot \tan^2 7x+\tan^2 5x \cdot \tan^2 7x</cmath> | |
− | <cmath>=(\tan^2x+\tan^2 7x)(\tan^23x+\tan^2 5x)</cmath> | |
− | <cmath>=(\frac{1}{C} - 1 +\frac{1}{C7}-1)(\frac{1}{C3} - 1 +\frac{1}{C5}-1)</cmath> | |
− | <cmath>=(\frac{C+C7}{C \cdot C7} -2)( \frac{C3+C5}{C3 \cdot C5} -2)</cmath> | |
− | <cmath>=(\frac{1}{C \cdot S} -2)( \frac{1}{C3 \cdot S3} -2)</cmath> | |
− | <cmath>=(\frac{4}{S2} -2)( \frac{4}{S6} -2)</cmath> | |
− | <cmath>=4(\frac{2-S2}{S2})( \frac{2-S6}{S6})</cmath> | |
− | <cmath>=4(\frac{4-2 \cdot S2-S \cdot S6 }{S2 \cdot S6}+1)</cmath> | |
− | <cmath>=4 + \frac{8}{S2 \cdot S6} </cmath>
| |
− | <cmath>=4 + \frac{32}{S4} </cmath>
| |
− | <cmath>=4 + 64 </cmath>
| |
− | <cmath>= 68 </cmath>
| |
| | | |
− | ~[https://artofproblemsolving.com/wiki/index.php/User:Cyantist luckuso]
| + | <asy> |
| + | size(7cm); |
| + | defaultpen(fontsize(10pt)+linewidth(0.4)); |
| | | |
− | ==Solution 6 (Half angle formula twice)== | + | pair A = (0, 0), B = (55/12, sqrt(3551)/12), C = (151/12, sqrt(3551)/12), D = (8, 0), M = (C + D)/2, N = (A + B)/2, O = (A + D)/2, E = (B + O)/2, P = intersectionpoints(circle(O,abs(A-O)),circle(E,abs(B-O)/2))[1], Q = intersectionpoints(circle(O,abs(A-O)),circle(E,abs(B-O)/2))[0], R = (P + Q)/2; |
− | So from the question we have:
| + | draw(A--B--C--D--cycle); |
− | <cmath>\tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {3\pi}{16} + \tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {5\pi}{16}+\tan^2 \frac {3\pi}{16} \cdot \tan^2 \frac {7\pi}{16}+\tan^2 \frac {5\pi}{16} \cdot \tan^2 \frac {7\pi}{16}</cmath>
| + | draw(arc(O,abs(A-O),0,180)); |
| + | draw(B--P, gray); |
| + | draw(B--Q, gray); |
| + | draw(B--O, dashed); |
| + | draw(P--M); |
| + | draw(rightanglemark(M, R, E)); |
| + | fill(M--E--O--cycle, pink); |
| | | |
| + | dot("$A$", A, dir(263)); |
| + | dot("$B$", B, dir(83)); |
| + | dot("$C$", C, dir(83)); |
| + | dot("$D$", D, dir(263)); |
| + | dot("$E$", E, dir(353)); |
| + | dot("$M$", M, dir(353)); |
| + | dot("$O$", O, dir(263)); |
| + | dot("$P$", P, dir(135)); |
| + | dot("$Q$", Q, dir(45)); |
| + | dot("$R$", R, dir(45)); |
| + | dot("$N$", N, dir(187)); |
| + | </asy> |
| | | |
− | <cmath>=(\tan^2\frac{\pi}{16}+\tan^2 \frac{7\pi}{16})(\tan^2\frac{3\pi}{16}+\tan^2 \frac{5\pi}{16})</cmath> | + | Applying the Law of Cosines in <math>\triangle MEO</math>, <cmath>MO^{2} = 6^{2} + \left(\frac{5}{2}\right)^{2} + 2 \cdot \frac{5}{2} \cdot 6 \cdot \frac{7}{60} = 36 + \frac{25}{4} + \frac{7}{2} = \frac{183}{4}.</cmath> A double homothety at <math>D</math> gives <math>AC^{2} = 4MO^{2} = \boxed{\textbf{(D)}~183}</math>. |
| | | |
− | Using <math>\tan^2\frac{\theta}{2}=\frac{1-\cos\theta}{1+\cos\theta}</math>
| + | ==Solution 2== |
| + | Let <math>M</math>, <math>O</math>, and <math>N</math> be the midpoints of <math>\overline{CD}</math>, <math>\overline{AD}</math>, and <math>\overline{AB}</math> respectively. Let <math>E</math> be the midpoint of <math>\overline{BO}</math> and let <math>\gamma</math> be the circumcircle of <math>\triangle{BPQ}</math>. |
| | | |
| + | First, <math>OP = \tfrac{AD}{2} = \tfrac{BC}{2} = 4</math>, so the radius of <math>\omega</math> is <math>4</math>. Since <math>\angle{OPB} = \angle{OQB} = 90^{\circ}</math>, <math>\overline{BO}</math> is a diameter of <math>\gamma</math>, and <math>\gamma</math> has center <math>E</math>. The Pythagorean theorem applied to either <math>\triangle{BPO}</math> or <math>\triangle{BQO}</math> gives that <math>BO = 5</math>, so the radius of <math>\gamma</math> is <math>\tfrac{5}{2}</math>. Since <math>E</math> is the midpoint of <math>\overline{BO}</math>, and <math>ABCD</math> is a parallelogram, we must have that <math>E</math> lies on <math>\overline{MN}</math>, and lies <math>\tfrac{3}{4}</math> of the way from <math>M</math> to <math>N</math>, giving <math>ME = \tfrac{3MN}{4} = 6</math>. |
| | | |
− | <cmath>=(\frac{1+\cos\frac{\pi}{8}}{1-\cos\frac{\pi}{8}}+\frac{1+\cos\frac{7\pi}{8}}{1-\cos\frac{7\pi}{8}})(\frac{1+\cos\frac{3\pi}{8}}{1-\cos\frac{3\pi}{8}}+\frac{1+\cos\frac{5\pi}{8}}{1-\cos\frac{5\pi}{8}})</cmath> | + | Since <math>M</math> lies on line <math>PQ</math>, the radical axis of <math>\gamma</math> and <math>\omega</math>, it has equal power with respect to both circles. Thus <cmath>\text{Pow}_{\gamma}{(M)} = ME^{2} - EB^{2} = 6^{2} - \left(\frac{5}{2}\right)^{2} = \frac{119}{4} = \text{Pow}_{\omega}{(M)} = MO^{2} - OA^{2} = MO^{2} - 16,</cmath> and <math>MO^{2} = \tfrac{183}{4}</math>. A double homothety at <math>D</math> finishes, and <math>AC^{2} = (2MO)^{2} = 4MO^{2} = \boxed{\textbf{(D)}~183}</math>. |
| | | |
− | Using <math>\cos\theta=-\cos(\pi-\theta)</math>
| + | ==Solution 3== |
| + | Let <math>M</math> and <math>O</math> be the midpoints of <math>\overline{CD}</math> and <math>\overline{AD}</math>, respectively. Consider taking segment <math>\overline{BO}</math>, translating it <math>8</math> units in the direction of vector <math>\vec{AD}</math>. Then perform a homothety with ratio <math>\tfrac{1}{2}</math> at <math>D</math>, mapping <math>B</math> to <math>M</math> and <math>O</math> to <math>O^{\prime}</math>. Since <math>CO^{\prime} = 2</math> and <math>CO = 4</math>, we have that <math>OO^{\prime} = 6</math>. Also, <math>MO^{\prime} = \tfrac{OB}{2} = \tfrac{5}{2}</math>. |
| | | |
− | <cmath>=(\frac{1+\cos\frac{\pi}{8}}{1-\cos\frac{\pi}{8}}+\frac{1-\cos\frac{\pi}{8}}{1+\cos\frac{\pi}{8}})(\frac{1+\cos\frac{3\pi}{8}}{1-\cos\frac{3\pi}{8}}+\frac{1-\cos\frac{3\pi}{8}}{1+\cos\frac{3\pi}{8}})</cmath>
| + | Let <math>\overline{BO}</math> and <math>\overline{PQ}</math> intersect at <math>R</math>, and note that <math>OR = \tfrac{16}{5}</math>. Since <math>\overline{OR} \perp \overline{PQ}</math>, we also have <math>\overline{O^{\prime}M} \perp \overline{PQ}</math>. Applying the Pythagorean theorem on right trapezoid <math>ORMO^{\prime}</math>, we have <math>RM^{2} = 6^{2} - \left(\tfrac{16}{5} - \tfrac{5}{2}\right)^{2} = \tfrac{3551}{100}</math>. The Pythagorean theorem in <math>\triangle ORM</math> can again be used to calculate <math>MO^{2} = \left(\tfrac{16}{5}\right)^{2} + \tfrac{3551}{100} = \tfrac{183}{4}</math>. As in other solutions, <math>AC^{2} = 4MO^{2} = \boxed{\textbf{(D)}~183}</math>. |
− | | |
− | <cmath>=(\frac{(1+\cos\frac{\pi}{8})^2+(1-\cos\frac{\pi}{8})^2}{1-\cos^2\frac{\pi}{8}})(\frac{(1+\cos\frac{3\pi}{8})^2+(1-\cos\frac{3\pi}{8})^2}{1-\cos^2\frac{3\pi}{8}})</cmath>
| |
− | | |
− | <cmath>=(\frac{2+2\cos^2\frac{\pi}{8}}{1-\cos^2\frac{\pi}{8}})(\frac{2+2\cos^2\frac{3\pi}{8}}{1-\cos^2\frac{3\pi}{8}})</cmath>
| |
− | | |
− | Using <math>\cos^2\frac{\theta}{2}=\frac{1+\cos\theta}{2}</math>
| |
− | | |
− | <cmath>=(\frac{2+1+\cos\frac{\pi}{4}}{1-\frac{1+\cos\frac{\pi}{4}}{2}})(\frac{2+1+\cos\frac{3\pi}{4}}{1-\frac{1+\cos\frac{3\pi}{4}}{2}})</cmath>
| |
− | | |
− | <cmath>=(\frac{12+2\sqrt{2}}{4-2\sqrt{2}})(\frac{12-2\sqrt{2}}{4+2\sqrt{2}})</cmath>
| |
− | | |
− | <cmath>=\frac{136}{2}=\boxed{\textbf{B) }68 }</cmath>
| |
− | | |
− | ~ERiccc
| |
− | ==Solution 7(single formula)==
| |
− | <cmath>\cot \alpha - \tan \alpha = 2 \cot 2 \alpha \implies \cot^2 \alpha + \tan^2 \alpha = 4 \cot^2 2 \alpha + 2.</cmath>
| |
− | We use <math>\alpha = \frac {\pi}{16}</math> for <math>(\tan^2\frac{\pi}{16}+\tan^2 \frac{7\pi}{16})(\tan^2\frac{3\pi}{16}+\tan^2 \frac{5\pi}{16}).</math>
| |
− | | |
− | <cmath>(\tan^2 \alpha + \cot^2 \alpha)(\tan^2 (\frac{\pi}{4} - \alpha) + \cot^2 (\frac{\pi}{4} - \alpha)) = (4 \cot^2 2 \alpha + 2)(4 \cot^2 (\frac{\pi}{2} - 2\alpha) +2) =</cmath>
| |
− | <cmath>= 4 \cdot(4+ 2\tan^2 2\alpha + 2\cot^2 2\alpha +1) = 20 + 8 \cdot (4 \cot^2 4 \alpha +2) = 68.\blacksquare</cmath>
| |
− | '''vladimir.shelomovskii@gmail.com, vvsss'''
| |
− | | |
− | ==Solution 8 (Vietas)==
| |
− | As the above solutions noted, we can factor the expression into <math>(\tan^2\frac{\pi}{16}+\tan^2 \frac{7\pi}{16})(\tan^2\frac{3\pi}{16}+\tan^2 \frac{5\pi}{16})</math>.
| |
− | | |
− | Before we directly solve this problem, let's analyze the roots of <math>\tan(4\tan^{-1}{x}) = 1</math>, or equivalently using tangent expansion formula, <math>\frac{1-6x^2+x^4}{4x-4x^3}=1</math>, which implies <math>x^4+4x^3-6x^2-4x+1=0</math>. Now note that the roots of this equation are precisely <math>\tan\frac{\pi}{16}, \tan\frac{5\pi}{16}, \tan\frac{9\pi}{16}, \tan\frac{13\pi}{16}</math>, so the second symmetric sum of these four numbers is <math>6</math> by Vieta's. Thus, we have <cmath>\tan\frac{\pi}{16}\tan\frac{5\pi}{16}+\tan\frac{\pi}{16}\tan\frac{9\pi}{16}+\tan\frac{\pi}{16}\tan\frac{13\pi}{16}+\tan\frac{5\pi}{16}\tan\frac{9\pi}{16}+\tan\frac{5\pi}{16}\tan\frac{13\pi}{16}+\tan\frac{9\pi}{16}\tan\frac{13\pi}{16}=6</cmath>
| |
− | Upon further inspection, <math>\tan\frac{\pi}{16}\tan\frac{9\pi}{16}+\tan\frac{5\pi}{16}\tan\frac{13\pi}{16}=-2</math> using the fact that <math>\tan(x)*\tan(x + \pi/2) = -1</math>. Hence, we have <cmath>\tan\frac{\pi}{16}\tan\frac{5\pi}{16}-1+\tan\frac{\pi}{16}\tan\frac{13\pi}{16}+\tan\frac{5\pi}{16}\tan\frac{9\pi}{16}-1+\tan\frac{9\pi}{16}\tan\frac{13\pi}{16}=6</cmath>
| |
− | <cmath>\tan\frac{\pi}{16}\tan\frac{5\pi}{16}+\tan\frac{\pi}{16}\tan\frac{13\pi}{16}+\tan\frac{5\pi}{16}\tan\frac{9\pi}{16}+\tan\frac{9\pi}{16}\tan\frac{13\pi}{16}=8</cmath>
| |
− | <cmath>(\tan\frac{\pi}{16}+\tan\frac{9\pi}{16})(\tan\frac{5\pi}{16}+\tan\frac{13\pi}{16})=8</cmath>
| |
− | | |
− | Now, we return to the problem statement, where we see a similar squared sum. We use this motivation to square our equation above to obtain
| |
− | | |
− | <cmath>(\tan^2\frac{\pi}{16}+\tan^2\frac{9\pi}{16}-2)(\tan^2\frac{5\pi}{16}+\tan^2\frac{13\pi}{16}-2)=64</cmath>
| |
− | <cmath>(\tan^2\frac{\pi}{16}+\tan^2\frac{9\pi}{16})(\tan^2\frac{5\pi}{16}+\tan^2\frac{13\pi}{16})-2(\tan^2\frac{\pi}{16}+\tan^2\frac{5\pi}{16}+\tan^2\frac{9\pi}{16}+\tan^2\frac{13\pi}{16})+4=64</cmath>
| |
− | <cmath>(\tan^2\frac{\pi}{16}+\tan^2\frac{9\pi}{16})(\tan^2\frac{5\pi}{16}+\tan^2\frac{13\pi}{16})-2(\tan^2\frac{\pi}{16}+\tan^2\frac{5\pi}{16}+\tan^2\frac{9\pi}{16}+\tan^2\frac{13\pi}{16})=60</cmath>
| |
− | Then, use the fact that <math>\tan^2{x}=\tan^2{\pi/2-x}</math> to get
| |
− | <cmath>(\tan^2\frac{\pi}{16}+\tan^2\frac{7\pi}{16})(\tan^2\frac{3\pi}{16}+\tan^2\frac{5\pi}{16})-2(\tan^2\frac{\pi}{16}+\tan^2\frac{5\pi}{16}+\tan^2\frac{9\pi}{16}+\tan^2\frac{13\pi}{16})=60</cmath>
| |
− | Hold on; the first term is exactly what we are solving for! It thus suffices to find <math>\tan^2\frac{\pi}{16}+\tan^2\frac{5\pi}{16}+\tan^2\frac{9\pi}{16}+\tan^2\frac{13\pi}{16}</math>. Fortunately, this is just <math>{S_1}^2-2{S_2}</math> (Where <math>S_n</math> is the nth symmetric sum), with relation to roots of <math>x^4+4x^3-6x^2-4x+1=0</math>. By Vieta's, this is just <math>(-4)^2-2(6)=4</math>.
| |
− | | |
− | Finally, we plug this value into our equation to obtain
| |
− | <cmath>(\tan^2\frac{\pi}{16}+\tan^2\frac{7\pi}{16})(\tan^2\frac{3\pi}{16}+\tan^2\frac{5\pi}{16})-2(4)=60</cmath>
| |
− | <cmath>(\tan^2\frac{\pi}{16}+\tan^2\frac{7\pi}{16})(\tan^2\frac{3\pi}{16}+\tan^2\frac{5\pi}{16})=\boxed{68}</cmath>
| |
− | | |
− | ==Alternate proof of the two tangent squares formula==
| |
− | | |
− | We want to simplify <math>\tan^{2}(x)</math> + <math>\tan^{2}(\frac{\pi}{2} - x)</math>. We make use of the fact that <math>\tan(\frac{\pi}{2} - x)</math> = <math>\cot(x)</math>.Then, the expression becomes <math>\tan^{2}(x)</math> + <math>\cot^{2}(x)</math>.
| |
− | Notice we can write:
| |
− | <math>(\tan x + \cot x)^{2}</math> as <math>\tan^{2}(x)</math> + <math>\cot^{2}(x)</math> + 2 as tangent and cotangent are reciprocals of each other. Then, the sum of the tangent and cotangent can be simplified to <math>\frac{\sec^{2}{x}}{\tan x}</math>. Using the fact that secant is the reciprocal of cosine and tangent is the ratio of sine and cosine, we can simplify that expression to <math>\frac{1}{\sin x \cos x}</math>. So, we have that: <math>\tan^{2}(x)</math> + <math>\cot^{2}(x)</math> = <math>\frac{1}{(\sin x \cos x)^2} - {2}</math> which can be simplfied to: <math>2\Bigr(\frac{2}{\sin^{2}(2x)} - 1\Bigr)</math> or <math>\frac{4}{\sin^{2}(2x)} - 2</math> as stated in earlier solutions.
| |
− | | |
− | ~ilikemath247365
| |
| | | |
| ==See also== | | ==See also== |
| {{AMC12 box|year=2024|ab=A|num-b=22|num-a=24}} | | {{AMC12 box|year=2024|ab=A|num-b=22|num-a=24}} |
| + | {{AMC10 box|year=2024|ab=A|num-b=24|after=Last Problem}} |
| + | |
| + | [[Category:Intermediate Geometry Problems]] |
| {{MAA Notice}} | | {{MAA Notice}} |
- The following problem is from both the 2024 AMC 12A #23 and 2024 AMC 10A #25, so both problems redirect to this page.
Problem
In parallelogram
, let
be the circle with diameter
and suppose
and
are points on
such that both lines
and
are tangent to
. If
,
, and line
bisects
, what is
?
Solution 1
Let
,
, and
be the midpoints of
,
, and
, respectively. Let
intersect
at
and note that the radius of
is
. The Pythagorean theorem applied to
gives
, and the similarity
implies
.
Let
intersect
at point
. Since
is a parallelogram,
is the midpoint of
and
. Because
, we have
and
. It follows that
Applying the Law of Cosines in
,
A double homothety at
gives
.
Solution 2
Let
,
, and
be the midpoints of
,
, and
respectively. Let
be the midpoint of
and let
be the circumcircle of
.
First,
, so the radius of
is
. Since
,
is a diameter of
, and
has center
. The Pythagorean theorem applied to either
or
gives that
, so the radius of
is
. Since
is the midpoint of
, and
is a parallelogram, we must have that
lies on
, and lies
of the way from
to
, giving
.
Since
lies on line
, the radical axis of
and
, it has equal power with respect to both circles. Thus
and
. A double homothety at
finishes, and
.
Solution 3
Let
and
be the midpoints of
and
, respectively. Consider taking segment
, translating it
units in the direction of vector
. Then perform a homothety with ratio
at
, mapping
to
and
to
. Since
and
, we have that
. Also,
.
Let
and
intersect at
, and note that
. Since
, we also have
. Applying the Pythagorean theorem on right trapezoid
, we have
. The Pythagorean theorem in
can again be used to calculate
. As in other solutions,
.
See also
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.