Difference between revisions of "2024 AMC 12A Problems/Problem 23"

(removed a completely bogus solution)
Line 1: Line 1:
 +
{{duplicate|[[2024 AMC 12A Problems/Problem 23|2024 AMC 12A #23]] and [[2024 AMC 10A Problems/Problem 25|2024 AMC 10A #25]]}}
 +
 
==Problem==
 
==Problem==
What is the value of <cmath>\tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {3\pi}{16} + \tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {5\pi}{16}+\tan^2 \frac {3\pi}{16} \cdot \tan^2 \frac {7\pi}{16}+\tan^2 \frac {5\pi}{16} \cdot \tan^2 \frac {7\pi}{16}?</cmath>
+
In parallelogram <math>ABCD</math>, let <math>\omega</math> be the circle with diameter <math>\overline{AD}</math> and suppose <math>P</math> and <math>Q</math> are points on <math>\omega</math> such that both lines <math>BP</math> and <math>BQ</math> are tangent to <math>\omega</math>. If <math>BC = 8</math>, <math>BP = 3</math>, and line <math>PQ</math> bisects <math>\overline{CD}</math>, what is <math>AC^{2}</math>?
 
 
<math>\textbf{(A) } 28 \qquad \textbf{(B) } 68 \qquad \textbf{(C) } 70 \qquad \textbf{(D) } 72 \qquad \textbf{(E) } 84</math>
 
 
 
==Solution 1 (Trigonometric Identities)==
 
 
 
First, notice that
 
 
 
<cmath>\tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {3\pi}{16} + \tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {5\pi}{16}+\tan^2 \frac {3\pi}{16} \cdot \tan^2 \frac {7\pi}{16}+\tan^2 \frac {5\pi}{16} \cdot \tan^2 \frac {7\pi}{16}</cmath>
 
 
 
 
 
<cmath>=(\tan^2\frac{\pi}{16}+\tan^2 \frac{7\pi}{16})(\tan^2\frac{3\pi}{16}+\tan^2 \frac{5\pi}{16})</cmath>
 
 
 
 
 
Here, we make use of the fact that
 
 
 
<cmath>\tan^2 x+\tan^2 (\frac{\pi}{2}-x)</cmath>
 
<cmath>=(\tan x+\tan (\frac{\pi}{2}-x))^2-2</cmath>
 
<cmath>=\left(\frac{\sin x}{\cos x}+\frac{\sin (\frac{\pi}{2}-x)}{\cos (\frac{\pi}{2}-x)}\right)^2-2</cmath>
 
<cmath>=\left(\frac{\sin x \cos (\frac{\pi}{2}-x)+\sin (\frac{\pi}{2}-x) \cos x}{\cos x \cos (\frac{\pi}{2}-x)}\right)^2-2</cmath>
 
<cmath>=\left(\frac{\sin \frac{\pi}{2}}{\cos x \cos (\frac{\pi}{2}-x)}\right)^2-2</cmath>
 
<cmath>=\left(\frac{1}{\cos x \sin x}\right)^2-2</cmath>
 
<cmath>=\left(\frac{2}{\sin 2x}\right)^2-2</cmath>
 
<cmath>=\frac{4}{\sin^2 2x}-2</cmath>
 
 
 
Hence,
 
 
 
<cmath>(\tan^2\frac{\pi}{16}+\tan^2 \frac{7\pi}{16})(\tan^2\frac{3\pi}{16}+\tan^2 \frac{4\pi}{16})</cmath>
 
<cmath>=\left(\frac{4}{\sin^2 \frac{\pi}{8}}-2\right)\left(\frac{4}{\sin^2 \frac{3\pi}{8}}-2\right)</cmath>
 
 
 
Note that
 
 
 
<cmath>\sin^2 \frac{\pi}{8}=\frac{1-\cos \frac{\pi}{4}}{2}=\frac{2-\sqrt{2}}{4}</cmath>
 
 
 
 
<cmath>\sin^2 \frac{3\pi}{8}=\frac{1-\cos \frac{3\pi}{4}}{2}=\frac{2+\sqrt{2}}{4}</cmath>
 
 
 
Hence,
 
 
 
<cmath>\left(\frac{4}{\sin^2 \frac{\pi}{8}}-2\right)\left(\frac{4}{\sin^2 \frac{3\pi}{8}}-2\right)</cmath>
 
 
 
<cmath>=\left(\frac{16}{2-\sqrt{2}}-2\right)\left(\frac{16}{2+\sqrt{2}}-2\right)</cmath>
 
 
 
<cmath>=(14+8\sqrt{2})(14-8\sqrt{2})</cmath>
 
 
 
<cmath>=68</cmath>
 
 
 
Therefore, the answer is <math>\fbox{\textbf{(B) } 68}</math>.
 
 
 
~tsun26
 
 
 
==Solution 2 (Another Identity)==
 
 
 
First, notice that
 
 
 
<cmath>\tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {3\pi}{16} + \tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {5\pi}{16}+\tan^2 \frac {3\pi}{16} \cdot \tan^2 \frac {7\pi}{16}+\tan^2 \frac {5\pi}{16} \cdot \tan^2 \frac {7\pi}{16}</cmath>
 
 
 
 
 
<cmath>=(\tan^2\frac{\pi}{16}+\tan^2 \frac{7\pi}{16})(\tan^2\frac{3\pi}{16}+\tan^2 \frac{5\pi}{16})</cmath>
 
 
 
 
 
Here, we make use of the fact that
 
 
 
<cmath>
 
\begin{align*}
 
\tan^2 x+\tan^2 (\frac{\pi}{2}-x) &= (\tan x - \tan (\frac{\pi}{2} - x))^2 + 2\\
 
&= (\tan (\frac{\pi}{2} - 2x) \cdot (1 + \tan x \tan (\frac{\pi}{2} - x))^2 + 2~~~~(\mathrm{difference~of~two~tan})\\
 
&= (\tan (\frac{\pi}{2} - 2x) \cdot (1 + 1))^2 + 2\\
 
&= 4\tan^2 (\frac{\pi}{2} - 2x) + 2
 
\end{align*}
 
</cmath>
 
 
 
Hence,
 
 
 
<cmath>
 
\begin{align*}
 
(\tan^2\frac{\pi}{16}+\tan^2 \frac{7\pi}{16})(\tan^2\frac{3\pi}{16}+\tan^2 \frac{5\pi}{16}) &= (4\tan^2 (\frac{\pi}{2} - \frac{\pi}{16} \cdot 2) + 2)(4\tan^2 (\frac{\pi}{2} - \frac{3\pi}{16} \cdot 2) + 2)\\
 
&= (4\tan^2 \frac{3\pi}{8} + 2)(4\tan^2 \frac{\pi}{8} + 2)\\
 
&= 16\tan^2 \frac{3\pi}{8} \cdot \tan^2 \frac{\pi}{8} + 8(\tan^2 \frac{3\pi}{8} + \tan^2 \frac{\pi}{8}) + 4\\
 
&= 16 + 8(4\tan^2 (\frac{\pi}{2} - \frac{\pi}{8} \cdot 2) + 2) + 4\\
 
&= 16 + 8(4\tan^2 \frac{\pi}{4} + 2) + 4\\
 
&= 16 + 8(4 + 2) + 4\\
 
&= 68
 
\end{align*}
 
</cmath>
 
 
 
Therefore, the answer is <math>\fbox{\textbf{(B) } 68}</math>.
 
 
 
~[https://artofproblemsolving.com/wiki/index.php/User:Reda_mandymath reda_mandymath]
 
 
 
==Solution 3 (Complex Numbers)==
 
Let <math>\theta = \frac{\pi}{16}</math>. Then,
 
<cmath>
 
y = e^{8i\theta} = e^{\frac{\pi}{2} i} = (\cos \theta + i\sin \theta)^8 = 0 + i.
 
</cmath>
 
Expanding by using a binomial expansion,
 
<cmath>
 
\Re(y) = \cos^8 \theta - 28 \cos^6 \theta \sin^2 \theta + 70 \cos^4 \theta \sin^4 \theta - 28 \cos^2 \theta \sin^6 \theta +  \sin^8\theta =0.
 
</cmath>
 
Divide by <math>\cos^8 \theta</math> and notice we can set <math>\frac{\sin \theta}{\cos \theta} = x</math> where <math>x = \tan(\theta)</math>. Then, define <math>f(x)</math> so that
 
<cmath>
 
f(x) = 1 - 28 x^2 + 70 x^4 - 28 x^6 + x^8.
 
</cmath>
 
 
 
Notice that we can have <math>(\cos \theta_k + i \sin \theta_k)^8 = 0 \pm i</math> because we are only considering the real parts. We only have this when <math>k \equiv 1,3 \mod 4</math>, meaning <math>k \equiv 1 \mod 2</math>. This means that we have <math>k = 1,3,5,7,9,11,13,15</math> as unique roots (we get them from <math>k\theta \in [0,\pi]</math>) and by using the fact that <math>\tan(\pi - \theta) = -\tan \theta</math>, we get <cmath>x \in \left\{\tan \theta, -\tan \theta, \tan \left(3 \theta \right), -\tan \left(3 \theta \right), \tan \left(5 \theta \right), -\tan \left(5 \theta \right), \tan \left(7 \theta \right), -\tan \left(7 \theta \right) \right\} </cmath>
 
Since we have a monic polynomial, by the Fundamental Theorem of Algebra,
 
<cmath>f(x) = (x-\tan \theta)(x+\tan \theta) (x-\tan \left(3 \theta \right))(x+\tan \left(3 \theta \right)) (x-\tan \left(5 \theta \right))(x+\tan \left(5 \theta \right))(x-\tan\left(7 \theta \right))(x+\tan \left(7 \theta \right))</cmath>
 
<cmath>f(x) =  (x^2 - \tan^2 \theta)(x^2 - \tan^2 (3\theta))(x^2 - \tan^2 (5\theta))(x^2 - \tan^2 (7\theta))
 
</cmath>
 
Looking at the <math>x^4</math> term in the expansion for <math>f(x)</math> and using vietas gives us
 
<cmath>
 
\tan^2 \theta  \tan^2 (3\theta) + \tan^2 \theta  \tan^2 (5\theta) + \tan^2 \theta  \tan^2 (7\theta) + \tan^2 (3\theta)  \tan^2 (5\theta)
 
</cmath>
 
<cmath>
 
+ \tan^2 (3\theta)  \tan^2 (7\theta) + \tan^2 (5\theta)  \tan^2 (7\theta) = \frac{70}{1} = 70.
 
</cmath>
 
Since <math>\tan\left(\frac{\pi}{2} - \theta\right) = \cot \theta</math> and <math> \tan \theta  \cot \theta = 1</math>
 
<cmath>
 
\tan^2 \theta  \tan^2 (7\theta) = \tan^2 (3\theta)  \tan^2 (5\theta) = 1.
 
</cmath>
 
Therefore
 
<cmath>
 
\tan^2 \theta  \tan^2 (3\theta) + \tan^2 \theta  \tan^2 (5\theta) + \tan^2 (3\theta)  \tan^2 (7\theta) + \tan^2 (5\theta)  \tan^2 (7\theta) + 2 = 70.
 
</cmath>
 
<cmath>
 
\tan^2 \theta  \tan^2 (3\theta) + \tan^2 \theta  \tan^2 (5\theta) + \tan^2 (3\theta)  \tan^2 (7\theta) + \tan^2 (5\theta)  \tan^2 (7\theta) = \boxed{\textbf{(B) } 68}
 
</cmath>
 
 
 
~[https://artofproblemsolving.com/wiki/index.php/User:KEVIN_LIU KEVIN_LIU]
 
  
==Solution 5 (Transformation)==
+
<math>\textbf{(A)}~180\qquad\textbf{(B)}~181\qquad\textbf{(C)}~182\qquad\textbf{(D)}~183\qquad\textbf{(E)}~184</math>
  
Set x = <math>\pi/16</math> , 7x = <math>\pi/2</math> - x ,  
+
==Solution 1==
set C7 = <math>cos^2(7x)</math> , C5 = <math>cos^2(5x)</math>, C3 = <math>cos^2(3x)</math>, C= <math>cos^2(x)</math> , S2 = <math>sin^2(2x)</math> , S6 = <math>sin^2(6x), etc.</math>
+
Let <math>M</math>, <math>O</math>, and <math>N</math> be the midpoints of <math>\overline{CD}</math>, <math>\overline{AD}</math>, and <math>\overline{AB}</math>, respectively. Let <math>\overline{PQ}</math> intersect <math>\overline{BO}</math> at <math>R</math> and note that the radius of <math>\omega</math> is <math>\tfrac{AD}{2} = \tfrac{8}{2} = 4</math>. The Pythagorean theorem applied to <math>\triangle BPO</math> gives <math>BO = 5</math>, and the similarity <math>\triangle BPR \sim \triangle BOP</math> implies <math>BR = \tfrac{BP^{2}}{BO} = \tfrac{9}{5}</math>.
  
First, notice that
+
Let <math>\overline{MN}</math> intersect <math>\overline{BO}</math> at point <math>E</math>. Since <math>ABCD</math> is a parallelogram, <math>E</math> is the midpoint of <math>\overline{BO}</math> and <math>EN = \tfrac{AO}{2} = \tfrac{4}{2} = 2</math>. Because <math>MN = BC = 8</math>, we have <math>ME = 6</math> and <math>RE = BE - BR = \tfrac{5}{2} - \tfrac{9}{5} = \tfrac{7}{10}</math>. It follows that <cmath>\cos(\angle MEO) = \cos(\pi - \angle MER) = -\cos(\angle MER) = -\tfrac{7}{60}.</cmath>
<cmath>\tan^2 x \cdot \tan^2 3x + \tan^2 3x \cdot \tan^2 5x+\tan^2 3x \cdot \tan^2 7x+\tan^2 5x \cdot \tan^2 7x</cmath>
 
<cmath>=(\tan^2x+\tan^2 7x)(\tan^23x+\tan^2 5x)</cmath>
 
<cmath>=(\frac{1}{C} - 1 +\frac{1}{C7}-1)(\frac{1}{C3} - 1 +\frac{1}{C5}-1)</cmath>
 
<cmath>=(\frac{C+C7}{C \cdot C7} -2)( \frac{C3+C5}{C3 \cdot C5} -2)</cmath>
 
<cmath>=(\frac{1}{C \cdot S} -2)( \frac{1}{C3 \cdot S3} -2)</cmath>
 
<cmath>=(\frac{4}{S2} -2)( \frac{4}{S6} -2)</cmath>
 
<cmath>=4(\frac{2-S2}{S2})( \frac{2-S6}{S6})</cmath>
 
<cmath>=4(\frac{4-2 \cdot S2-S \cdot S6 }{S2 \cdot S6}+1)</cmath>
 
<cmath>=4 + \frac{8}{S2 \cdot S6} </cmath>
 
<cmath>=4 + \frac{32}{S4} </cmath>
 
<cmath>=4 +  64 </cmath>
 
<cmath>= 68 </cmath>
 
  
~[https://artofproblemsolving.com/wiki/index.php/User:Cyantist luckuso]
+
<asy>
 +
size(7cm);
 +
defaultpen(fontsize(10pt)+linewidth(0.4));
  
==Solution 6 (Half angle formula twice)==
+
pair A = (0, 0), B = (55/12, sqrt(3551)/12), C = (151/12, sqrt(3551)/12), D = (8, 0), M = (C + D)/2, N = (A + B)/2, O = (A + D)/2, E = (B + O)/2, P = intersectionpoints(circle(O,abs(A-O)),circle(E,abs(B-O)/2))[1], Q = intersectionpoints(circle(O,abs(A-O)),circle(E,abs(B-O)/2))[0], R = (P + Q)/2;
So from the question we have:
+
draw(A--B--C--D--cycle);
<cmath>\tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {3\pi}{16} + \tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {5\pi}{16}+\tan^2 \frac {3\pi}{16} \cdot \tan^2 \frac {7\pi}{16}+\tan^2 \frac {5\pi}{16} \cdot \tan^2 \frac {7\pi}{16}</cmath>
+
draw(arc(O,abs(A-O),0,180));
 +
draw(B--P, gray);
 +
draw(B--Q, gray);
 +
draw(B--O, dashed);
 +
draw(P--M);
 +
draw(rightanglemark(M, R, E));
 +
fill(M--E--O--cycle, pink);
  
 +
dot("$A$", A, dir(263));
 +
dot("$B$", B, dir(83));
 +
dot("$C$", C, dir(83));
 +
dot("$D$", D, dir(263));
 +
dot("$E$", E, dir(353));
 +
dot("$M$", M, dir(353));
 +
dot("$O$", O, dir(263));
 +
dot("$P$", P, dir(135));
 +
dot("$Q$", Q, dir(45));
 +
dot("$R$", R, dir(45));
 +
dot("$N$", N, dir(187));
 +
</asy>
  
<cmath>=(\tan^2\frac{\pi}{16}+\tan^2 \frac{7\pi}{16})(\tan^2\frac{3\pi}{16}+\tan^2 \frac{5\pi}{16})</cmath>
+
Applying the Law of Cosines in <math>\triangle MEO</math>, <cmath>MO^{2} = 6^{2} + \left(\frac{5}{2}\right)^{2} + 2 \cdot \frac{5}{2} \cdot 6 \cdot \frac{7}{60} = 36 + \frac{25}{4} + \frac{7}{2} = \frac{183}{4}.</cmath> A double homothety at <math>D</math> gives <math>AC^{2} = 4MO^{2} = \boxed{\textbf{(D)}~183}</math>.
  
Using <math>\tan^2\frac{\theta}{2}=\frac{1-\cos\theta}{1+\cos\theta}</math>
+
==Solution 2==
 +
Let <math>M</math>, <math>O</math>, and <math>N</math> be the midpoints of <math>\overline{CD}</math>, <math>\overline{AD}</math>, and <math>\overline{AB}</math> respectively. Let <math>E</math> be the midpoint of <math>\overline{BO}</math> and let <math>\gamma</math> be the circumcircle of <math>\triangle{BPQ}</math>.
  
 +
First, <math>OP = \tfrac{AD}{2} = \tfrac{BC}{2} = 4</math>, so the radius of <math>\omega</math> is <math>4</math>. Since <math>\angle{OPB} = \angle{OQB} = 90^{\circ}</math>, <math>\overline{BO}</math> is a diameter of <math>\gamma</math>, and <math>\gamma</math> has center <math>E</math>. The Pythagorean theorem applied to either <math>\triangle{BPO}</math> or <math>\triangle{BQO}</math> gives that <math>BO = 5</math>, so the radius of <math>\gamma</math> is <math>\tfrac{5}{2}</math>. Since <math>E</math> is the midpoint of <math>\overline{BO}</math>, and <math>ABCD</math> is a parallelogram, we must have that <math>E</math> lies on <math>\overline{MN}</math>, and lies <math>\tfrac{3}{4}</math> of the way from <math>M</math> to <math>N</math>, giving <math>ME = \tfrac{3MN}{4} = 6</math>.
  
<cmath>=(\frac{1+\cos\frac{\pi}{8}}{1-\cos\frac{\pi}{8}}+\frac{1+\cos\frac{7\pi}{8}}{1-\cos\frac{7\pi}{8}})(\frac{1+\cos\frac{3\pi}{8}}{1-\cos\frac{3\pi}{8}}+\frac{1+\cos\frac{5\pi}{8}}{1-\cos\frac{5\pi}{8}})</cmath>
+
Since <math>M</math> lies on line <math>PQ</math>, the radical axis of <math>\gamma</math> and <math>\omega</math>, it has equal power with respect to both circles. Thus <cmath>\text{Pow}_{\gamma}{(M)} = ME^{2} - EB^{2} = 6^{2} - \left(\frac{5}{2}\right)^{2} = \frac{119}{4} = \text{Pow}_{\omega}{(M)} = MO^{2} - OA^{2} = MO^{2} - 16,</cmath> and <math>MO^{2} = \tfrac{183}{4}</math>. A double homothety at <math>D</math> finishes, and <math>AC^{2} = (2MO)^{2} = 4MO^{2} = \boxed{\textbf{(D)}~183}</math>.
  
Using <math>\cos\theta=-\cos(\pi-\theta)</math>
+
==Solution 3==
 +
Let <math>M</math> and <math>O</math> be the midpoints of <math>\overline{CD}</math> and <math>\overline{AD}</math>, respectively. Consider taking segment <math>\overline{BO}</math>, translating it <math>8</math> units in the direction of vector <math>\vec{AD}</math>. Then perform a homothety with ratio <math>\tfrac{1}{2}</math> at <math>D</math>, mapping <math>B</math> to <math>M</math> and <math>O</math> to <math>O^{\prime}</math>. Since <math>CO^{\prime} = 2</math> and <math>CO = 4</math>, we have that <math>OO^{\prime} = 6</math>. Also, <math>MO^{\prime} = \tfrac{OB}{2} = \tfrac{5}{2}</math>.
  
<cmath>=(\frac{1+\cos\frac{\pi}{8}}{1-\cos\frac{\pi}{8}}+\frac{1-\cos\frac{\pi}{8}}{1+\cos\frac{\pi}{8}})(\frac{1+\cos\frac{3\pi}{8}}{1-\cos\frac{3\pi}{8}}+\frac{1-\cos\frac{3\pi}{8}}{1+\cos\frac{3\pi}{8}})</cmath>
+
Let <math>\overline{BO}</math> and <math>\overline{PQ}</math> intersect at <math>R</math>, and note that <math>OR = \tfrac{16}{5}</math>. Since <math>\overline{OR} \perp \overline{PQ}</math>, we also have <math>\overline{O^{\prime}M} \perp \overline{PQ}</math>. Applying the Pythagorean theorem on right trapezoid <math>ORMO^{\prime}</math>, we have <math>RM^{2} = 6^{2} - \left(\tfrac{16}{5} - \tfrac{5}{2}\right)^{2} = \tfrac{3551}{100}</math>. The Pythagorean theorem in <math>\triangle ORM</math> can again be used to calculate <math>MO^{2} = \left(\tfrac{16}{5}\right)^{2} + \tfrac{3551}{100} = \tfrac{183}{4}</math>. As in other solutions, <math>AC^{2} = 4MO^{2} = \boxed{\textbf{(D)}~183}</math>.
 
 
<cmath>=(\frac{(1+\cos\frac{\pi}{8})^2+(1-\cos\frac{\pi}{8})^2}{1-\cos^2\frac{\pi}{8}})(\frac{(1+\cos\frac{3\pi}{8})^2+(1-\cos\frac{3\pi}{8})^2}{1-\cos^2\frac{3\pi}{8}})</cmath>
 
 
 
<cmath>=(\frac{2+2\cos^2\frac{\pi}{8}}{1-\cos^2\frac{\pi}{8}})(\frac{2+2\cos^2\frac{3\pi}{8}}{1-\cos^2\frac{3\pi}{8}})</cmath>
 
 
 
Using <math>\cos^2\frac{\theta}{2}=\frac{1+\cos\theta}{2}</math>
 
 
 
<cmath>=(\frac{2+1+\cos\frac{\pi}{4}}{1-\frac{1+\cos\frac{\pi}{4}}{2}})(\frac{2+1+\cos\frac{3\pi}{4}}{1-\frac{1+\cos\frac{3\pi}{4}}{2}})</cmath>
 
 
 
<cmath>=(\frac{12+2\sqrt{2}}{4-2\sqrt{2}})(\frac{12-2\sqrt{2}}{4+2\sqrt{2}})</cmath>
 
 
 
<cmath>=\frac{136}{2}=\boxed{\textbf{B) }68 }</cmath>
 
 
 
~ERiccc
 
==Solution 7(single formula)==
 
<cmath>\cot \alpha - \tan \alpha = 2 \cot 2 \alpha \implies \cot^2 \alpha + \tan^2 \alpha = 4 \cot^2 2 \alpha + 2.</cmath>
 
We use <math>\alpha = \frac {\pi}{16}</math> for <math>(\tan^2\frac{\pi}{16}+\tan^2 \frac{7\pi}{16})(\tan^2\frac{3\pi}{16}+\tan^2 \frac{5\pi}{16}).</math>
 
 
 
<cmath>(\tan^2 \alpha + \cot^2 \alpha)(\tan^2 (\frac{\pi}{4} - \alpha) + \cot^2 (\frac{\pi}{4} - \alpha)) = (4 \cot^2 2 \alpha + 2)(4 \cot^2 (\frac{\pi}{2} - 2\alpha) +2) =</cmath>
 
<cmath>= 4 \cdot(4+ 2\tan^2 2\alpha + 2\cot^2 2\alpha +1) = 20 + 8 \cdot (4 \cot^2 4 \alpha +2) = 68.\blacksquare</cmath>
 
'''vladimir.shelomovskii@gmail.com, vvsss'''
 
 
 
==Solution 8 (Vietas)==
 
As the above solutions noted, we can factor the expression into <math>(\tan^2\frac{\pi}{16}+\tan^2 \frac{7\pi}{16})(\tan^2\frac{3\pi}{16}+\tan^2 \frac{5\pi}{16})</math>.
 
 
 
Before we directly solve this problem, let's analyze the roots of <math>\tan(4\tan^{-1}{x}) = 1</math>, or equivalently using tangent expansion formula, <math>\frac{1-6x^2+x^4}{4x-4x^3}=1</math>, which implies <math>x^4+4x^3-6x^2-4x+1=0</math>. Now note that the roots of this equation are precisely <math>\tan\frac{\pi}{16}, \tan\frac{5\pi}{16}, \tan\frac{9\pi}{16}, \tan\frac{13\pi}{16}</math>, so the second symmetric sum of these four numbers is <math>6</math> by Vieta's. Thus, we have <cmath>\tan\frac{\pi}{16}\tan\frac{5\pi}{16}+\tan\frac{\pi}{16}\tan\frac{9\pi}{16}+\tan\frac{\pi}{16}\tan\frac{13\pi}{16}+\tan\frac{5\pi}{16}\tan\frac{9\pi}{16}+\tan\frac{5\pi}{16}\tan\frac{13\pi}{16}+\tan\frac{9\pi}{16}\tan\frac{13\pi}{16}=6</cmath>
 
Upon further inspection, <math>\tan\frac{\pi}{16}\tan\frac{9\pi}{16}+\tan\frac{5\pi}{16}\tan\frac{13\pi}{16}=-2</math> using the fact that <math>\tan(x)*\tan(x + \pi/2) = -1</math>. Hence, we have <cmath>\tan\frac{\pi}{16}\tan\frac{5\pi}{16}-1+\tan\frac{\pi}{16}\tan\frac{13\pi}{16}+\tan\frac{5\pi}{16}\tan\frac{9\pi}{16}-1+\tan\frac{9\pi}{16}\tan\frac{13\pi}{16}=6</cmath>
 
<cmath>\tan\frac{\pi}{16}\tan\frac{5\pi}{16}+\tan\frac{\pi}{16}\tan\frac{13\pi}{16}+\tan\frac{5\pi}{16}\tan\frac{9\pi}{16}+\tan\frac{9\pi}{16}\tan\frac{13\pi}{16}=8</cmath>
 
<cmath>(\tan\frac{\pi}{16}+\tan\frac{9\pi}{16})(\tan\frac{5\pi}{16}+\tan\frac{13\pi}{16})=8</cmath>
 
 
 
Now, we return to the problem statement, where we see a similar squared sum. We use this motivation to square our equation above to obtain
 
 
 
<cmath>(\tan^2\frac{\pi}{16}+\tan^2\frac{9\pi}{16}-2)(\tan^2\frac{5\pi}{16}+\tan^2\frac{13\pi}{16}-2)=64</cmath>
 
<cmath>(\tan^2\frac{\pi}{16}+\tan^2\frac{9\pi}{16})(\tan^2\frac{5\pi}{16}+\tan^2\frac{13\pi}{16})-2(\tan^2\frac{\pi}{16}+\tan^2\frac{5\pi}{16}+\tan^2\frac{9\pi}{16}+\tan^2\frac{13\pi}{16})+4=64</cmath>
 
<cmath>(\tan^2\frac{\pi}{16}+\tan^2\frac{9\pi}{16})(\tan^2\frac{5\pi}{16}+\tan^2\frac{13\pi}{16})-2(\tan^2\frac{\pi}{16}+\tan^2\frac{5\pi}{16}+\tan^2\frac{9\pi}{16}+\tan^2\frac{13\pi}{16})=60</cmath>
 
Then, use the fact that <math>\tan^2{x}=\tan^2{\pi/2-x}</math> to get
 
<cmath>(\tan^2\frac{\pi}{16}+\tan^2\frac{7\pi}{16})(\tan^2\frac{3\pi}{16}+\tan^2\frac{5\pi}{16})-2(\tan^2\frac{\pi}{16}+\tan^2\frac{5\pi}{16}+\tan^2\frac{9\pi}{16}+\tan^2\frac{13\pi}{16})=60</cmath>
 
Hold on; the first term is exactly what we are solving for! It thus suffices to find <math>\tan^2\frac{\pi}{16}+\tan^2\frac{5\pi}{16}+\tan^2\frac{9\pi}{16}+\tan^2\frac{13\pi}{16}</math>. Fortunately, this is just <math>{S_1}^2-2{S_2}</math> (Where <math>S_n</math> is the nth symmetric sum), with relation to roots of <math>x^4+4x^3-6x^2-4x+1=0</math>. By Vieta's, this is just <math>(-4)^2-2(6)=4</math>.
 
 
 
Finally, we plug this value into our equation to obtain
 
<cmath>(\tan^2\frac{\pi}{16}+\tan^2\frac{7\pi}{16})(\tan^2\frac{3\pi}{16}+\tan^2\frac{5\pi}{16})-2(4)=60</cmath>
 
<cmath>(\tan^2\frac{\pi}{16}+\tan^2\frac{7\pi}{16})(\tan^2\frac{3\pi}{16}+\tan^2\frac{5\pi}{16})=\boxed{68}</cmath>
 
 
 
==Alternate proof of the two tangent squares formula==
 
 
 
We want to simplify <math>\tan^{2}(x)</math> + <math>\tan^{2}(\frac{\pi}{2} - x)</math>. We make use of the fact that <math>\tan(\frac{\pi}{2} - x)</math> = <math>\cot(x)</math>.Then, the expression becomes <math>\tan^{2}(x)</math> + <math>\cot^{2}(x)</math>.  
 
Notice we can write:
 
<math>(\tan x + \cot x)^{2}</math> as <math>\tan^{2}(x)</math> + <math>\cot^{2}(x)</math> + 2 as tangent and cotangent are reciprocals of each other. Then, the sum of the tangent and cotangent can be simplified to <math>\frac{\sec^{2}{x}}{\tan x}</math>. Using the fact that secant is the reciprocal of cosine and tangent is the ratio of sine and cosine, we can simplify that expression to <math>\frac{1}{\sin x \cos x}</math>. So, we have that: <math>\tan^{2}(x)</math> + <math>\cot^{2}(x)</math> = <math>\frac{1}{(\sin x \cos x)^2} - {2}</math> which can be simplfied to: <math>2\Bigr(\frac{2}{\sin^{2}(2x)} - 1\Bigr)</math> or <math>\frac{4}{\sin^{2}(2x)} - 2</math> as stated in earlier solutions.  
 
 
 
~ilikemath247365
 
  
 
==See also==
 
==See also==
 
{{AMC12 box|year=2024|ab=A|num-b=22|num-a=24}}
 
{{AMC12 box|year=2024|ab=A|num-b=22|num-a=24}}
 +
{{AMC10 box|year=2024|ab=A|num-b=24|after=Last Problem}}
 +
 +
[[Category:Intermediate Geometry Problems]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 21:36, 20 March 2025

The following problem is from both the 2024 AMC 12A #23 and 2024 AMC 10A #25, so both problems redirect to this page.

Problem

In parallelogram $ABCD$, let $\omega$ be the circle with diameter $\overline{AD}$ and suppose $P$ and $Q$ are points on $\omega$ such that both lines $BP$ and $BQ$ are tangent to $\omega$. If $BC = 8$, $BP = 3$, and line $PQ$ bisects $\overline{CD}$, what is $AC^{2}$?

$\textbf{(A)}~180\qquad\textbf{(B)}~181\qquad\textbf{(C)}~182\qquad\textbf{(D)}~183\qquad\textbf{(E)}~184$

Solution 1

Let $M$, $O$, and $N$ be the midpoints of $\overline{CD}$, $\overline{AD}$, and $\overline{AB}$, respectively. Let $\overline{PQ}$ intersect $\overline{BO}$ at $R$ and note that the radius of $\omega$ is $\tfrac{AD}{2} = \tfrac{8}{2} = 4$. The Pythagorean theorem applied to $\triangle BPO$ gives $BO = 5$, and the similarity $\triangle BPR \sim \triangle BOP$ implies $BR = \tfrac{BP^{2}}{BO} = \tfrac{9}{5}$.

Let $\overline{MN}$ intersect $\overline{BO}$ at point $E$. Since $ABCD$ is a parallelogram, $E$ is the midpoint of $\overline{BO}$ and $EN = \tfrac{AO}{2} = \tfrac{4}{2} = 2$. Because $MN = BC = 8$, we have $ME = 6$ and $RE = BE - BR = \tfrac{5}{2} - \tfrac{9}{5} = \tfrac{7}{10}$. It follows that \[\cos(\angle MEO) = \cos(\pi - \angle MER) = -\cos(\angle MER) = -\tfrac{7}{60}.\]

[asy] size(7cm); defaultpen(fontsize(10pt)+linewidth(0.4));  pair A = (0, 0), B = (55/12, sqrt(3551)/12), C = (151/12, sqrt(3551)/12), D = (8, 0), M = (C + D)/2, N = (A + B)/2, O = (A + D)/2, E = (B + O)/2, P = intersectionpoints(circle(O,abs(A-O)),circle(E,abs(B-O)/2))[1], Q = intersectionpoints(circle(O,abs(A-O)),circle(E,abs(B-O)/2))[0], R = (P + Q)/2; draw(A--B--C--D--cycle); draw(arc(O,abs(A-O),0,180)); draw(B--P, gray); draw(B--Q, gray); draw(B--O, dashed); draw(P--M); draw(rightanglemark(M, R, E)); fill(M--E--O--cycle, pink);  dot("$A$", A, dir(263)); dot("$B$", B, dir(83)); dot("$C$", C, dir(83)); dot("$D$", D, dir(263)); dot("$E$", E, dir(353)); dot("$M$", M, dir(353)); dot("$O$", O, dir(263)); dot("$P$", P, dir(135)); dot("$Q$", Q, dir(45)); dot("$R$", R, dir(45)); dot("$N$", N, dir(187)); [/asy]

Applying the Law of Cosines in $\triangle MEO$, \[MO^{2} = 6^{2} + \left(\frac{5}{2}\right)^{2} + 2 \cdot \frac{5}{2} \cdot 6 \cdot \frac{7}{60} = 36 + \frac{25}{4} + \frac{7}{2} = \frac{183}{4}.\] A double homothety at $D$ gives $AC^{2} = 4MO^{2} = \boxed{\textbf{(D)}~183}$.

Solution 2

Let $M$, $O$, and $N$ be the midpoints of $\overline{CD}$, $\overline{AD}$, and $\overline{AB}$ respectively. Let $E$ be the midpoint of $\overline{BO}$ and let $\gamma$ be the circumcircle of $\triangle{BPQ}$.

First, $OP = \tfrac{AD}{2} = \tfrac{BC}{2} = 4$, so the radius of $\omega$ is $4$. Since $\angle{OPB} = \angle{OQB} = 90^{\circ}$, $\overline{BO}$ is a diameter of $\gamma$, and $\gamma$ has center $E$. The Pythagorean theorem applied to either $\triangle{BPO}$ or $\triangle{BQO}$ gives that $BO = 5$, so the radius of $\gamma$ is $\tfrac{5}{2}$. Since $E$ is the midpoint of $\overline{BO}$, and $ABCD$ is a parallelogram, we must have that $E$ lies on $\overline{MN}$, and lies $\tfrac{3}{4}$ of the way from $M$ to $N$, giving $ME = \tfrac{3MN}{4} = 6$.

Since $M$ lies on line $PQ$, the radical axis of $\gamma$ and $\omega$, it has equal power with respect to both circles. Thus \[\text{Pow}_{\gamma}{(M)} = ME^{2} - EB^{2} = 6^{2} - \left(\frac{5}{2}\right)^{2} = \frac{119}{4} = \text{Pow}_{\omega}{(M)} = MO^{2} - OA^{2} = MO^{2} - 16,\] and $MO^{2} = \tfrac{183}{4}$. A double homothety at $D$ finishes, and $AC^{2} = (2MO)^{2} = 4MO^{2} = \boxed{\textbf{(D)}~183}$.

Solution 3

Let $M$ and $O$ be the midpoints of $\overline{CD}$ and $\overline{AD}$, respectively. Consider taking segment $\overline{BO}$, translating it $8$ units in the direction of vector $\vec{AD}$. Then perform a homothety with ratio $\tfrac{1}{2}$ at $D$, mapping $B$ to $M$ and $O$ to $O^{\prime}$. Since $CO^{\prime} = 2$ and $CO = 4$, we have that $OO^{\prime} = 6$. Also, $MO^{\prime} = \tfrac{OB}{2} = \tfrac{5}{2}$.

Let $\overline{BO}$ and $\overline{PQ}$ intersect at $R$, and note that $OR = \tfrac{16}{5}$. Since $\overline{OR} \perp \overline{PQ}$, we also have $\overline{O^{\prime}M} \perp \overline{PQ}$. Applying the Pythagorean theorem on right trapezoid $ORMO^{\prime}$, we have $RM^{2} = 6^{2} - \left(\tfrac{16}{5} - \tfrac{5}{2}\right)^{2} = \tfrac{3551}{100}$. The Pythagorean theorem in $\triangle ORM$ can again be used to calculate $MO^{2} = \left(\tfrac{16}{5}\right)^{2} + \tfrac{3551}{100} = \tfrac{183}{4}$. As in other solutions, $AC^{2} = 4MO^{2} = \boxed{\textbf{(D)}~183}$.

See also

2024 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2024 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png