Difference between revisions of "2025 USAJMO Problems/Problem 4"

(See Also)
(Solution: Edited cyc to sym in sum)
Line 7: Line 7:
  
 
By Vandermonde's,
 
By Vandermonde's,
<cmath> \frac 12\binom{\sum a_i}2=\frac 12\left(\sum\binom{a_i}2+\sum_\text{cyc}a_ia_j\right)\ge\frac 12\sum ia_i^2\ge\sum i\binom{a_i}2, </cmath>with equality at <math>a_0=0,1</math> and <math>a_i=0</math> for <math>i>0.~\square</math>
+
<cmath> \frac 12\binom{\sum a_i}2=\frac 12\left(\sum\binom{a_i}2+\sum_\text{sym}a_ia_j\right)\ge\frac 12\sum ia_i^2\ge\sum i\binom{a_i}2, </cmath>with equality at <math>a_0=0,1</math> and <math>a_i=0</math> for <math>i>0.~\square</math>
  
 
~rhydon516 (sol credits to leo)
 
~rhydon516 (sol credits to leo)

Revision as of 00:17, 25 April 2025

Problem

Let $n$ be a positive integer, and let $a_0,\,a_1,\dots,\,a_n$ be nonnegative integers such that $a_0\ge a_1\ge \dots\ge a_n.$ Prove that\[\sum_{i=0}^n i\binom{a_i}{2}\le\frac{1}{2}\binom{a_0+a_1+\dots+a_n}{2}.\]Note: $\binom{k}{2}=\frac{k(k-1)}{2}$ for all nonnegative integers $k$.

Solution

By Vandermonde's, \[\frac 12\binom{\sum a_i}2=\frac 12\left(\sum\binom{a_i}2+\sum_\text{sym}a_ia_j\right)\ge\frac 12\sum ia_i^2\ge\sum i\binom{a_i}2,\]with equality at $a_0=0,1$ and $a_i=0$ for $i>0.~\square$

~rhydon516 (sol credits to leo)

See Also

https://artofproblemsolving.com/community/c5h3532101_bombardiro_crocodilo_vs_tralalero_tralala

2025 USAJMO (ProblemsResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6
All USAJMO Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png