Difference between revisions of "2025 USAMO Problems/Problem 2"
(→Solution) |
m (→Solution) |
||
Line 6: | Line 6: | ||
Consider any subset of <math>k</math> roots <math>\{r_{i_1}, r_{i_2}, \ldots, r_{i_k}\}</math> and form the polynomial: | Consider any subset of <math>k</math> roots <math>\{r_{i_1}, r_{i_2}, \ldots, r_{i_k}\}</math> and form the polynomial: | ||
− | <cmath> Q(x) = \prod_{j=1}^k (x - r_{i_j}) = x^k + a_{k-1}x^{k-1} + \cdots + a_0 </cmath> | + | <cmath> Q(x) = \prod_{j=1}^k (x - r_{i_j}) =a_{k} x^k + a_{k-1}x^{k-1} + \cdots + a_0 </cmath> |
By Vieta's formulas: | By Vieta's formulas: |
Revision as of 14:40, 5 June 2025
Problem
Let and
be positive integers with
. Let
be a polynomial of degree
with real coefficients, nonzero constant term, and no repeated roots. Suppose that for any real numbers
such that the polynomial
divides
, the product
is zero. Prove that
has a nonreal root.
Solution
We proceed by contradiction. Assume that all roots of are real. Let the distinct roots be
, all nonzero since the constant term is nonzero.
Consider any subset of roots
and form the polynomial:
By Vieta's formulas:
The given condition requires that . Since
, at least one other coefficient must be zero.
Case :
For any pair of roots
, we have:
The condition implies
, so
for all pairs. But with
, considering three roots
gives:
contradicting distinct roots.
In General
:
For any
roots, some symmetric sum must be zero. For
, this would require:
which leads to contradictions when
as it would force roots to be equal.
Thus, our initial assumption is false, and must have at least one nonreal root.~Jonathan
See Also
2025 USAMO (Problems • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.