Difference between revisions of "2023 SSMO Relay Round 1 Problems"

 
Line 7: Line 7:
 
==Problem 2==
 
==Problem 2==
  
Let <math>T=</math> TNYWR. Let <math>a_0 = 3, a_1 = 1, a_2 = N</math>, and let <math>a_n = a_{n-1} - \frac{a_{n-3}}{8}</math>. Find <cmath>\sum_{i=0}^\infty a_i.</cmath>
+
Let <math>T=TNYWR</math>. Let <math>a_0 = 3, a_1 = 1, a_2 = N</math>, and let <math>a_n = a_{n-1} - \frac{a_{n-3}}{8}</math>. Find <cmath>\sum_{i=0}^\infty a_i.</cmath>
  
 
[[2023 SSMO Relay Round 1 Problems/Problem 2|Solution]]
 
[[2023 SSMO Relay Round 1 Problems/Problem 2|Solution]]
Line 13: Line 13:
 
==Problem 3==
 
==Problem 3==
  
Let <math>T=</math> TNYWR. Find the number of solutions to the equation  
+
Let <math>T=TNYWR</math>. Find the number of solutions to the equation  
 
<cmath>\sec^{N} (Nx) - \tan^{N}(Nx) = 1</cmath>
 
<cmath>\sec^{N} (Nx) - \tan^{N}(Nx) = 1</cmath>
 
such <math>0 \le x \le \pi</math>
 
such <math>0 \le x \le \pi</math>
  
 
[[2023 SSMO Relay Round 1 Problems/Problem 3|Solution]]
 
[[2023 SSMO Relay Round 1 Problems/Problem 3|Solution]]

Latest revision as of 19:18, 2 May 2025

Problem 1

Compute the remainder when $2022^{2021^{2020^{\dots}}}$ is divided by $2023$.

Solution

Problem 2

Let $T=TNYWR$. Let $a_0 = 3, a_1 = 1, a_2 = N$, and let $a_n = a_{n-1} - \frac{a_{n-3}}{8}$. Find \[\sum_{i=0}^\infty a_i.\]

Solution

Problem 3

Let $T=TNYWR$. Find the number of solutions to the equation \[\sec^{N} (Nx) - \tan^{N}(Nx) = 1\] such $0 \le x \le \pi$

Solution