Difference between revisions of "2023 WSMO Speed Round Problems/Problem 5"

(Created page with "==Problem== There exists a rational polynomial <math>f(x)</math> such that for all <math>x</math> in the range <math>(0,1),</math> <math>f(x)=\sum_{n=1}^{\infty}nx^n.</math>...")
 
 
Line 4: Line 4:
  
 
==Solution==
 
==Solution==
 +
We have
 +
<cmath>\begin{align*}
 +
f(x) &= x+2x^2+3x^3+4x^4+\ldots\text{and}\\
 +
xf(x) &= x^2+2x^3+3x^4+\ldots.\\
 +
\end{align*}</cmath>
 +
So, <cmath>f(x)-xf(x) = x+x^2+x^3+\ldots = \frac{x}{1-x}\implies f(x) = \frac{x}{(1-x)^2}</cmath> for <math>x</math> in the range <math>(0,1)</math>. For <math>x>1,</math> <math>f(x)</math> is strictly decreasing, meaning <math>f(x)</math> is maximized at <math>x=6.</math> Thus, our answer is <cmath>\frac{6}{(1-6)^2} = \frac{6}{25}\implies6+25 = \boxed{31}.</cmath>
 +
 +
~pinkpig

Latest revision as of 11:13, 12 September 2025

Problem

There exists a rational polynomial $f(x)$ such that for all $x$ in the range $(0,1),$ $f(x)=\sum_{n=1}^{\infty}nx^n.$ If the maximum of $f(x)$ over $[6,9]$ is $\frac{m}{n},$ for relatively prime positive integers $m$ and $n,$ find $m+n.$

Solution

We have \begin{align*} f(x) &= x+2x^2+3x^3+4x^4+\ldots\text{and}\\ xf(x) &= x^2+2x^3+3x^4+\ldots.\\ \end{align*} So, \[f(x)-xf(x) = x+x^2+x^3+\ldots = \frac{x}{1-x}\implies f(x) = \frac{x}{(1-x)^2}\] for $x$ in the range $(0,1)$. For $x>1,$ $f(x)$ is strictly decreasing, meaning $f(x)$ is maximized at $x=6.$ Thus, our answer is \[\frac{6}{(1-6)^2} = \frac{6}{25}\implies6+25 = \boxed{31}.\]

~pinkpig