Difference between revisions of "2023 WSMO Accuracy Round Problems/Problem 1"
(Created page with "==Problem== Let <math>x = \sqrt{69+\sqrt{69+\sqrt{69\dots}}}.</math> Find the value of <math>(2x-1)^2.</math> ==Solution==") |
|||
Line 4: | Line 4: | ||
==Solution== | ==Solution== | ||
+ | We have | ||
+ | <cmath>\begin{align*} | ||
+ | x &= \sqrt{69+x}\implies\\ | ||
+ | x^2 &= 69+x\implies\\ | ||
+ | x^2-x-69 &= 0\implies\\ | ||
+ | x &= \frac{1\pm\sqrt{277}}{2}\implies\\ | ||
+ | (2x-1)^2 &= \left(2\left(\frac{1\pm\sqrt{277}}{2}\right)-1\right)^2\\ | ||
+ | &= \left(\pm\sqrt{277}\right)^2 = \boxed{277}. | ||
+ | \end{align*}</cmath> | ||
+ | |||
+ | ~pinkpig |
Latest revision as of 11:35, 13 September 2025
Problem
Let Find the value of
Solution
We have
~pinkpig