Difference between revisions of "2023 WSMO Tiebreaker Round Problems/Problem 3"
(Created page with "==Problem== Let <math>S</math> be the set of all values of <math>a</math> such that the area of a triangle with side lengths <math>5, 7, a</math> is a positive integer. Find...") |
|||
Line 4: | Line 4: | ||
==Solution== | ==Solution== | ||
+ | Letting <math>5</math> be the base of the triangle, we have a height of <math>\frac{2h}{5}</math> for <math>0<\frac{2h}{5}\le 7\implies h\in\{1,2,\dots,17\}</math>. Note for each height, we have two posible values of <math>a</math>, if the triangle if acute or obtuse. We have | ||
+ | \begin{align*} | ||
+ | a_1^2 &= \left(5-\sqrt{7^2-\left(\frac{2h}{5}\right)^2}\right)^2+\left(\frac{2h}{5}\right)^2\\ | ||
+ | &= 5^2+\left(7^2-\left(\frac{2h}{5}\right)^2\right)-10\sqrt{7^2-\left(\frac{2h}{5}\right)^2}+\left(\frac{2h}{5}\right)^2\\ | ||
+ | &= 74-10\sqrt{7^2-\left(\frac{2h}{5}\right)^2}\\ | ||
+ | \end{align*} | ||
+ | for when the triangle is acute and | ||
+ | \begin{align*} | ||
+ | a_2^2 &= \left(5+\sqrt{7^2-\left(\frac{2h}{5}\right)^2}\right)^2+\left(\frac{2h}{5}\right)^2\\ | ||
+ | &= 5^2+\left(7^2-\left(\frac{2h}{5}\right)^2\right)+10\sqrt{7^2-\left(\frac{2h}{5}\right)^2}+\left(\frac{2h}{5}\right)^2\\ | ||
+ | &= 74+10\sqrt{7^2-\left(\frac{2h}{5}\right)^2}\\ | ||
+ | \end{align*} | ||
+ | for when the triangle is obtuse. We have <cmath>a_1^2+a_2^2=\left(74-10\sqrt{7^2-\left(\frac{2h}{5}\right)^2}\right)+\left(74+10\sqrt{7^2-\left(\frac{2h}{5}\right)^2}\right)=148.</cmath> So, <cmath>\sum_{x\in S}\left(x^2\right) = \sum_{h\in\{1,2,\dots,17\}}148 = 148\cdot17=\boxed{2516}.</cmath> | ||
+ | |||
+ | ~pinkpig |
Latest revision as of 11:14, 15 September 2025
Problem
Let be the set of all values of
such that the area of a triangle with side lengths
is a positive integer. Find
Solution
Letting be the base of the triangle, we have a height of
for
. Note for each height, we have two posible values of
, if the triangle if acute or obtuse. We have
\begin{align*}
a_1^2 &= \left(5-\sqrt{7^2-\left(\frac{2h}{5}\right)^2}\right)^2+\left(\frac{2h}{5}\right)^2\\
&= 5^2+\left(7^2-\left(\frac{2h}{5}\right)^2\right)-10\sqrt{7^2-\left(\frac{2h}{5}\right)^2}+\left(\frac{2h}{5}\right)^2\\
&= 74-10\sqrt{7^2-\left(\frac{2h}{5}\right)^2}\\
\end{align*}
for when the triangle is acute and
\begin{align*}
a_2^2 &= \left(5+\sqrt{7^2-\left(\frac{2h}{5}\right)^2}\right)^2+\left(\frac{2h}{5}\right)^2\\
&= 5^2+\left(7^2-\left(\frac{2h}{5}\right)^2\right)+10\sqrt{7^2-\left(\frac{2h}{5}\right)^2}+\left(\frac{2h}{5}\right)^2\\
&= 74+10\sqrt{7^2-\left(\frac{2h}{5}\right)^2}\\
\end{align*}
for when the triangle is obtuse. We have
So,
~pinkpig