Difference between revisions of "2024 SSMO Team Round Problems/Problem 1"

(Created page with "==Problem== How many ordered triples of positive integers <math>(a, b, c)</math> satisfy the equation <math>2(a^b)^c+1=513</math>? ==Solution==")
 
 
Line 4: Line 4:
  
 
==Solution==
 
==Solution==
 +
We have
 +
\begin{align*}
 +
2(a^b)^c+1 &= 513\\\implies
 +
a^{bc}&=256\implies a = 2^{a_1} \mid a_1 \in \mathbb{Z}_{\ge 0}\\\implies
 +
2^{a_1bc} &= 2^{8}\\\implies
 +
a_1bc &= 2^3\implies a_1 = 2^{a_2},b=2^{b_1}, c = 2^{c_1} \mid a_2,b_1,c_1 \in \mathbb{Z}_{\ge 0}\\\implies
 +
2^{a_2+b_1+c_1} &=2^3\\\implies
 +
a_2+b_1+c_1&=3.
 +
\end{align*}
 +
From the Hockey Stick Identity, it follows that this equation has <math>\binom{5}{2} = \boxed{10}</math> solutions.
 +
 +
~SMO_Team

Latest revision as of 14:35, 10 September 2025

Problem

How many ordered triples of positive integers $(a, b, c)$ satisfy the equation $2(a^b)^c+1=513$?

Solution

We have \begin{align*} 2(a^b)^c+1 &= 513\\\implies a^{bc}&=256\implies a = 2^{a_1} \mid a_1 \in \mathbb{Z}_{\ge 0}\\\implies 2^{a_1bc} &= 2^{8}\\\implies a_1bc &= 2^3\implies a_1 = 2^{a_2},b=2^{b_1}, c = 2^{c_1} \mid a_2,b_1,c_1 \in \mathbb{Z}_{\ge 0}\\\implies 2^{a_2+b_1+c_1} &=2^3\\\implies a_2+b_1+c_1&=3. \end{align*} From the Hockey Stick Identity, it follows that this equation has $\binom{5}{2} = \boxed{10}$ solutions.

~SMO_Team