Difference between revisions of "2024 SSMO Relay Round 2 Problems/Problem 2"
(Created page with "==Problem== Let <math>T = TNYWR.</math> If <cmath>a = \sum_{n=1}^{N}n(n+1)(n+2),</cmath> find the last three digits of <math>a.</math> ==Solution==") |
|||
Line 4: | Line 4: | ||
==Solution== | ==Solution== | ||
+ | We seek to find the last three digits of <math>\sum_{n=1}^{19}n(n+1)(n+2).</math> Note that | ||
+ | \begin{align*} | ||
+ | \sum_{n=1}^{19}n(n+1)(n+2)&=\sum_{n=1}^{19}(n^3+3n^2+2n)\\ | ||
+ | &=\sum_{n=1}^{19}n^3+3\sum_{n=1}^{19}n^2+2\sum_{n=1}^{19}n\\ | ||
+ | &=\left(\frac{19\cdot20}{2}\right)^2+3\left(\frac{19\cdot20\cdot39}{6}\right)+2\left(\frac{19\cdot20}{2}\right)\\ | ||
+ | &=190^2+(19\cdot39)\cdot10+380\\ | ||
+ | &=36100+7410+380\\ | ||
+ | &\equiv100+410+380\\ | ||
+ | &\equiv\boxed{890}\pmod{1000}. | ||
+ | \end{align*} | ||
+ | |||
+ | ~SMO_Team |
Latest revision as of 14:43, 10 September 2025
Problem
Let If
find the last three digits of
Solution
We seek to find the last three digits of Note that
\begin{align*}
\sum_{n=1}^{19}n(n+1)(n+2)&=\sum_{n=1}^{19}(n^3+3n^2+2n)\\
&=\sum_{n=1}^{19}n^3+3\sum_{n=1}^{19}n^2+2\sum_{n=1}^{19}n\\
&=\left(\frac{19\cdot20}{2}\right)^2+3\left(\frac{19\cdot20\cdot39}{6}\right)+2\left(\frac{19\cdot20}{2}\right)\\
&=190^2+(19\cdot39)\cdot10+380\\
&=36100+7410+380\\
&\equiv100+410+380\\
&\equiv\boxed{890}\pmod{1000}.
\end{align*}
~SMO_Team