Difference between revisions of "2024 SSMO Speed Round Problems/Problem 10"
(→Solution) |
|||
Line 3: | Line 3: | ||
Let <math>a_1, a_2, \dots a_{14}</math> be the roots of <math>(x^7-x^3+2)^2=0</math>. Find the value of <math>\prod_{i=1}^{14} (a_i^7+1)</math>. | Let <math>a_1, a_2, \dots a_{14}</math> be the roots of <math>(x^7-x^3+2)^2=0</math>. Find the value of <math>\prod_{i=1}^{14} (a_i^7+1)</math>. | ||
− | ==Solution== | + | ==Solution 1== |
+ | |||
+ | Let <math>a_1,a_2,\dots,a_7</math> be the roots of <cmath>f(x) = x^7-x^3+2 = \prod_{i=1}^7(x-a_i).</cmath> It is easy to see that <cmath>\prod_{i=1}^{14}(a_i^7+1) = \left(\prod_{i=1}^{7}(a_i^7+1)\right)^2.</cmath> Now, we have <math>a_i^7-a_i^3+2 = 0\implies a_i^7+1 = a_i^3-1.</math> Denote <math>1,\omega,\frac{1}{\omega}</math> as the roots of <math>x^3-1,</math> with <math>\omega^3 = 1.</math> So, | ||
+ | <cmath>\begin{align*} | ||
+ | \prod_{i=1}^{7}(a_i^7+1)&=\prod_{i=1}^{7}(a_i^3-1)\\ | ||
+ | &=\prod_{i=1}^{7}(a_i-1)\prod_{i=1}^{7}(a_i-\omega)\prod_{i=1}^{7}\left(a_i-\frac{1}{\omega}\right)\\ | ||
+ | &=-\prod_{i=1}^{7}(1-a_i)\prod_{i=1}^{7}(\omega-a_i)\prod_{i=1}^{7}\left(\frac{1}{\omega}-a_i\right)\\ | ||
+ | &=-f(1)f(\omega)f\left(\frac{1}{\omega}\right)\\ | ||
+ | &=-2(\omega^7-\omega^3+2)\left(\left(\frac{1}{\omega}\right)^7-\left(\frac{1}{\omega}\right)^3+2\right)\\ | ||
+ | &=-2(\omega-1+2)\left(\frac{1}{\omega}-1+2\right)\\ | ||
+ | &=-2(\omega+1)\left(\frac{1}{\omega}+1\right)\\ | ||
+ | &=-2\left(1+\left(\omega+\frac{1}{\omega}\right)+1\right)\\ | ||
+ | &=-2\left(1-1+1\right)=-2. | ||
+ | \end{align*}</cmath> | ||
+ | Thus, our answer is <math>(-2)^2 = \boxed{4}.</math> | ||
+ | |||
+ | ~SMO_Team | ||
+ | |||
+ | ==Solution 2== | ||
Let <math>a_1, a_2, \dots, a_7</math> be the solutions to <math>x^7 - x^3 + 2</math>. The set <math>a_1, a_2, \dots a_{14}</math> is just <math>2</math> duplicates of this set (all roots are double roots due to square = 0 condition), so we can just calculate the given product over these roots and then square the final result. | Let <math>a_1, a_2, \dots, a_7</math> be the solutions to <math>x^7 - x^3 + 2</math>. The set <math>a_1, a_2, \dots a_{14}</math> is just <math>2</math> duplicates of this set (all roots are double roots due to square = 0 condition), so we can just calculate the given product over these roots and then square the final result. | ||
Latest revision as of 14:29, 10 September 2025
Problem
Let be the roots of
. Find the value of
.
Solution 1
Let be the roots of
It is easy to see that
Now, we have
Denote
as the roots of
with
So,
Thus, our answer is
~SMO_Team
Solution 2
Let be the solutions to
. The set
is just
duplicates of this set (all roots are double roots due to square = 0 condition), so we can just calculate the given product over these roots and then square the final result.
Since for all
, since these are roots to the equation, we have that
where
is a third root of unity. Let
and break the above products into
separate products, we have that
Therefore, the answer is equal to the square of this product:
.
-Vivdax