Difference between revisions of "2024 AMC 12B Problems/Problem 19"
Line 134: | Line 134: | ||
-Magnetoninja | -Magnetoninja | ||
+ | |||
+ | ==Solution 4== | ||
+ | <cmath>[\triangle ABD] = \frac{[ADBECF]-[\triangle ABC]}{3} = \frac{91\sqrt{3}-49\sqrt{3}}{3} = 14\sqrt{3}</cmath> | ||
+ | |||
+ | Let <math>M</math> be the intersection of <math>AB</math> and <math>DE</math>. Since <math>DMB</math> is isosceles and <math>\angle AMD = \theta</math>, we have <math>\angle ABD = \theta/2</math>. Also, all of the hexagon's internal angles are equal, so <math>\angle ADB = 120^\circ</math>. | ||
+ | <asy> | ||
+ | defaultpen(fontsize(13)); | ||
+ | size(220); | ||
+ | |||
+ | // Base points and rotation | ||
+ | pair O = (0,0); | ||
+ | pair A = dir(225); | ||
+ | pair B = dir(-15); | ||
+ | pair D = rotate(38.21, O)*A; | ||
+ | pair E = rotate(38.21, O)*B; | ||
+ | |||
+ | // Intersection point of AB and DE | ||
+ | pair M = extension(A, B, D, E); | ||
+ | |||
+ | // Triangle and segments | ||
+ | defaultpen(fontsize(13)); | ||
+ | size(220); | ||
+ | |||
+ | // Base triangle from rotated figure | ||
+ | pair O = (0,0); | ||
+ | pair A = dir(225); | ||
+ | pair B = dir(-15); | ||
+ | pair D = rotate(38.21, O)*A; | ||
+ | pair E = rotate(38.21, O)*B; | ||
+ | |||
+ | // M is intersection of AB and DE | ||
+ | pair M = extension(A, B, D, E); | ||
+ | |||
+ | // Draw triangle and segment | ||
+ | draw(A--B--D--cycle, black+0.9); | ||
+ | draw(D--M, gray + dashed); | ||
+ | |||
+ | // Draw angle theta at AMD | ||
+ | real r = 0.1; | ||
+ | path thetaArc = arc(M, r, degrees(D - M), degrees(A - M)); | ||
+ | draw(thetaArc, gray); | ||
+ | label("$\theta$", M + (r+0.1)*dir((degrees(D - M) + degrees(A - M))/2), gray); | ||
+ | |||
+ | // Draw congruence ticks on MB and MD | ||
+ | pair u1 = unit(B - M), u2 = unit(D - M); | ||
+ | pair tick1a = midpoint(M--B) + rotate(90)*u1 * 0.04; | ||
+ | pair tick1b = midpoint(M--B) + rotate(-90)*u1 * 0.04; | ||
+ | pair tick2a = midpoint(M--D) + rotate(90)*u2 * 0.04; | ||
+ | pair tick2b = midpoint(M--D) + rotate(-90)*u2 * 0.04; | ||
+ | draw(tick1a--tick1b, gray); | ||
+ | draw(tick2a--tick2b, gray); | ||
+ | |||
+ | // Labels | ||
+ | dot("$A$", A, dir(A)); | ||
+ | dot("$B$", B, dir(B)); | ||
+ | dot("$D$", D, dir(D)); | ||
+ | dot("$M$", M, N); | ||
+ | </asy> | ||
+ | Using the side-angle-side area formula: | ||
+ | <cmath>14\sqrt{3} = \frac{1}{2} \cdot 14 \cdot BD \cdot \sin\left(\frac{\theta}{2}\right) \Rightarrow BD = \frac{2\sqrt{3}}{\sin(\theta/2)}.</cmath> | ||
+ | |||
+ | Apply Law of Sines on <math>\triangle ABD</math> with <math>\angle DAB = 60^\circ - \theta/2</math>: | ||
+ | <cmath>\frac{14}{\sin 120^\circ} = \frac{BD}{\sin(60^\circ - \theta/2)}</cmath> | ||
+ | <cmath>\frac{28}{\sqrt{3}} = \frac{2\sqrt{3}}{\sin(\theta/2)\sin(60^\circ - \theta/2)}.</cmath> | ||
+ | <cmath>\sin(\theta/2)\sin(60^\circ - \theta/2) = \frac{3}{14}.</cmath> | ||
+ | Using trig identities: | ||
+ | <cmath>\sqrt{\frac{1-\cos(\theta)}{2}} \cdot (\sin(60^\circ)\cos(\theta/2) - \sin(\theta/2)\cos(60^\circ)) = \frac{3}{14}</cmath> | ||
+ | <cmath>\sqrt{\frac{1-\cos(\theta)}{2}} \cdot \left(\frac{\sqrt{3}}{2}\cos(\theta/2) - \frac{1}{2}\sin(\theta/2)\right) = \frac{3}{14}</cmath> | ||
+ | <cmath>\sqrt{\frac{1-\cos(\theta)}{2}} \cdot \left(\frac{\sqrt{3}}{2} \sqrt{\frac{1+\cos(\theta)}{2}} - \frac{1}{2} \sqrt{\frac{1-\cos(\theta)}{2}} \right) = \frac{3}{14}</cmath> | ||
+ | <cmath>\left(\frac{\sqrt{3}}{2}\sqrt{\frac{1-\cos^2(\theta)}{4}} - \frac{1}{2}\left(\frac{1-\cos(\theta)}{2}\right)\right) = \frac{3}{14}</cmath> | ||
+ | <cmath>\frac{\sqrt{3}\sin\theta}{4} - \frac{(1-\cos\theta)}{4} = \frac{3}{14}</cmath> | ||
+ | <cmath>\sqrt{3}\sin\theta + \cos\theta = \frac{13}{7}</cmath> | ||
+ | <cmath>\cos\theta = \frac{13}{7} - \sqrt{3}\sin\theta.</cmath> | ||
+ | |||
+ | Substitute into <math>\sin^2\theta + \cos^2\theta = 1</math>: | ||
+ | <cmath>\left(\frac{13}{7} - \sqrt{3}\sin\theta\right)^2 + \sin^2\theta = 1.</cmath> | ||
+ | <cmath>4\sin^2\theta - \frac{26\sqrt{3}}{7}\sin\theta + \frac{120}{49} = 0.</cmath> | ||
+ | |||
+ | Solving: | ||
+ | <cmath>\sin\theta = \frac{5\sqrt{3}}{14} \quad (\text{valid root}), \quad \cos\theta = \frac{11}{14} \Rightarrow \tan\theta = \frac{5\sqrt{3}}{11}.</cmath> | ||
+ | |||
+ | <cmath>\boxed{\text{(B) }\frac{5\sqrt{3}}{11}}</cmath> | ||
+ | ~sparkycat | ||
==Video Solution by SpreadTheMathLove== | ==Video Solution by SpreadTheMathLove== |
Latest revision as of 00:06, 23 July 2025
Contents
Problem 19
Equilateral with side length
is rotated about its center by angle
, where
, to form
. See the figure. The area of hexagon
is
. What is
?
Solution 1
Let O be circumcenter of the equilateral triangle
Easily get
is invalid given
,
Solution 2
From 's side lengths of 14, we get
We let
And
The answer would be
Which area =
And area =
So we have that
Which means
Now, can be calculated using the addition identity, which gives the answer of
~mitsuihisashi14 ~luckuso (fixed Latex error )
Solution 3 (No Trig Manipulations)
Let the circumcenter of the circle inscribing this polygon be . The area of the equilateral triangle is
. The area of one of the three smaller triangles, say
is
. Let
be the altitude of
, so if we extend
to point
where
, we get right triangle
. Note that the height
, computed given the area and side length
, so
.
so Pythag gives
. This means that
, so Pythag gives
. Let
and the midpoint of
be
so that
, so that Pythag on
gives
. Then
. Then
.
-Magnetoninja
Solution 4
Let be the intersection of
and
. Since
is isosceles and
, we have
. Also, all of the hexagon's internal angles are equal, so
.
Using the side-angle-side area formula:
Apply Law of Sines on with
:
Using trig identities:
Substitute into :
Solving:
~sparkycat
Video Solution by SpreadTheMathLove
https://www.youtube.com/watch?v=akLlCXKtXnk
See also
2024 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 18 |
Followed by Problem 20 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.