Difference between revisions of "1997 CEMC Pascal Problems/Problem 1"

(Created page with "==Problem== <math>\frac{4 + 35}{8 - 5}</math> equals <math> \text{ (A) }\ \frac{11}{7} \qquad\text{ (B) }\ 8 \qquad\text{ (C) }\ \frac{7}{2} \qquad\text{ (D) }\ -12 \qquad\te...")
 
 
Line 4: Line 4:
 
<math> \text{ (A) }\ \frac{11}{7} \qquad\text{ (B) }\ 8 \qquad\text{ (C) }\ \frac{7}{2} \qquad\text{ (D) }\ -12 \qquad\text{ (E) }\ 13</math>
 
<math> \text{ (A) }\ \frac{11}{7} \qquad\text{ (B) }\ 8 \qquad\text{ (C) }\ \frac{7}{2} \qquad\text{ (D) }\ -12 \qquad\text{ (E) }\ 13</math>
 
==Solution==
 
==Solution==
 +
We can simply add the numbers in the [[numerator]] and [[denominator]] of the fraction, and then simplify the fraction:
 +
 
<math>\frac{4 + 35}{8 - 5} = \frac{39}{3} = \boxed {\textbf {(E) } 13}</math>
 
<math>\frac{4 + 35}{8 - 5} = \frac{39}{3} = \boxed {\textbf {(E) } 13}</math>
  
 
~anabel.disher
 
~anabel.disher

Latest revision as of 12:34, 22 June 2025

Problem

$\frac{4 + 35}{8 - 5}$ equals

$\text{ (A) }\ \frac{11}{7} \qquad\text{ (B) }\ 8 \qquad\text{ (C) }\ \frac{7}{2} \qquad\text{ (D) }\ -12 \qquad\text{ (E) }\ 13$

Solution

We can simply add the numbers in the numerator and denominator of the fraction, and then simplify the fraction:

$\frac{4 + 35}{8 - 5} = \frac{39}{3} = \boxed {\textbf {(E) } 13}$

~anabel.disher