Difference between revisions of "2004 AMC 10A Problems/Problem 19"

(Solution)
Line 25: Line 25:
 
<math> \mathrm{(A) \ } 120 \qquad \mathrm{(B) \ } 180 \qquad \mathrm{(C) \ } 240 \qquad \mathrm{(D) \ } 360 \qquad \mathrm{(E) \ } 480  </math>
 
<math> \mathrm{(A) \ } 120 \qquad \mathrm{(B) \ } 180 \qquad \mathrm{(C) \ } 240 \qquad \mathrm{(D) \ } 360 \qquad \mathrm{(E) \ } 480  </math>
  
==Solution==
+
==Solution 1==
 
The cylinder can be "unwrapped" into a rectangle, and we see that there are two stripes which is a parallelogram with base <math>3</math> and height <math>40</math>, each. Thus, we get <math>3\times40\times2=240\Rightarrow\boxed{\mathrm{(C)}\ 240}</math>
 
The cylinder can be "unwrapped" into a rectangle, and we see that there are two stripes which is a parallelogram with base <math>3</math> and height <math>40</math>, each. Thus, we get <math>3\times40\times2=240\Rightarrow\boxed{\mathrm{(C)}\ 240}</math>
 +
 +
==Solution 2 (Complement Counting)==
 +
Like in Solution 1 "unwrap" the lateral surface of the cylinder into a rectangle, the width of the rectangle is the circumference of the circular base which is <math>30\times\pi</math>. And the length is just the height of the cylinder, <math>80</math>. Now if we don't see that the stripe is just a parallelogram we can calculate the area of the two right triangles with legs <math>80</math> and <math>30\pi-3</math>, and subtract our result from the total area of the rectangle to get the area of the stripe. Thus the area of the stripe is <math>80\times30\pi-(2(</math>80\times(30\pi-3))/2)<math>. And simplifying this our answer is </math>3\times40\times2=240\Rightarrow\boxed{\mathrm{(C)}\ 240}$ ~blankbox
  
 
==Video Solution==
 
==Video Solution==

Revision as of 20:18, 13 August 2025

Problem

A white cylindrical silo has a diameter of 30 feet and a height of 80 feet. A red stripe with a horizontal width of 3 feet is painted on the silo, as shown, making two complete revolutions around it. What is the area of the stripe in square feet?

[asy]  size(250);defaultpen(linewidth(0.8)); draw(ellipse(origin, 3, 1)); fill((3,0)--(3,2)--(-3,2)--(-3,0)--cycle, white); draw((3,0)--(3,16)^^(-3,0)--(-3,16)); draw((0, 15)--(3, 12)^^(0, 16)--(3, 13)); filldraw(ellipse((0, 16), 3, 1), white, black); draw((-3,11)--(3, 5)^^(-3,10)--(3, 4)); draw((-3,2)--(0,-1)^^(-3,1)--(-1,-0.89)); draw((0,-1)--(0,15), dashed); draw((3,-2)--(3,-4)^^(-3,-2)--(-3,-4)); draw((-7,0)--(-5,0)^^(-7,16)--(-5,16)); draw((3,-3)--(-3,-3), Arrows(6)); draw((-6,0)--(-6,16), Arrows(6)); draw((-2,9)--(-1,9), Arrows(3)); label("$3$", (-1.375,9.05), dir(260), fontsize(7)); label("$A$", (0,15), N); label("$B$", (0,-1), NE); label("$30$", (0, -3), S); label("$80$", (-6, 8), W);[/asy]

$\mathrm{(A) \ } 120 \qquad \mathrm{(B) \ } 180 \qquad \mathrm{(C) \ } 240 \qquad \mathrm{(D) \ } 360 \qquad \mathrm{(E) \ } 480$

Solution 1

The cylinder can be "unwrapped" into a rectangle, and we see that there are two stripes which is a parallelogram with base $3$ and height $40$, each. Thus, we get $3\times40\times2=240\Rightarrow\boxed{\mathrm{(C)}\ 240}$

Solution 2 (Complement Counting)

Like in Solution 1 "unwrap" the lateral surface of the cylinder into a rectangle, the width of the rectangle is the circumference of the circular base which is $30\times\pi$. And the length is just the height of the cylinder, $80$. Now if we don't see that the stripe is just a parallelogram we can calculate the area of the two right triangles with legs $80$ and $30\pi-3$, and subtract our result from the total area of the rectangle to get the area of the stripe. Thus the area of the stripe is $80\times30\pi-(2($80\times(30\pi-3))/2)$. And simplifying this our answer is$3\times40\times2=240\Rightarrow\boxed{\mathrm{(C)}\ 240}$ ~blankbox

Video Solution

https://youtu.be/PYTi6qZUAPw

Education, the Study of Everything


See also

2004 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png