Difference between revisions of "2016 USAMO Problems/Problem 2"

(Solution 4)
(Solution 4)
Line 54: Line 54:
 
</cmath>
 
</cmath>
  
We now expand each term using the formula:
+
Now expand each term using the formula:
 
<cmath>
 
<cmath>
\begin{aligned}
+
\nu_d(P_k(q)) =  
\nu_d(P_k(q)) &= \left( \sum_{i = 1}^{k^2} \left\lfloor \frac{i}{d} \right\rfloor - k^2 \delta_{d,1} \right) \\
+
\left( \sum_{i = 1}^{k^2} \left\lfloor \frac{i}{d} \right\rfloor - k^2 \delta_{d,1} \right)
&\quad + \sum_{j = 0}^{k - 1} \left( \sum_{i = 1}^{j} \left\lfloor \frac{i}{d} \right\rfloor - j \delta_{d,1} \right) \\
+
+ \sum_{j = 0}^{k - 1} \left( \sum_{i = 1}^{j} \left\lfloor \frac{i}{d} \right\rfloor - j \delta_{d,1} \right)
&\quad - \sum_{j = 0}^{k - 1} \left( \sum_{i = 1}^{j + k} \left\lfloor \frac{i}{d} \right\rfloor - (j + k) \delta_{d,1} \right).
+
- \sum_{j = 0}^{k - 1} \left( \sum_{i = 1}^{j + k} \left\lfloor \frac{i}{d} \right\rfloor - (j + k) \delta_{d,1} \right).
\end{aligned}
 
 
</cmath>
 
</cmath>
  
Now handle the <math>\delta_{d,1}</math> terms separately:
+
Handle the <math>\delta_{d,1}</math> terms separately:
 
<cmath>
 
<cmath>
\begin{aligned}
+
-k^2 - \sum_{j=0}^{k-1} j + \sum_{j=0}^{k-1} (j + k) = -k^2 - \frac{k(k - 1)}{2} + \left( \frac{k(k - 1)}{2} + k^2 \right) = 0.
\text{Total coefficient of } \delta_{d,1} &= -k^2 - \sum_{j=0}^{k-1} j + \sum_{j=0}^{k-1}(j + k) \\
 
&= -k^2 - \frac{k(k-1)}{2} + \left( \frac{k(k-1)}{2} + k^2 \right) = 0.
 
\end{aligned}
 
 
</cmath>
 
</cmath>
  
Therefore, we have
+
So all the <math>\delta_{d,1}</math> terms cancel. 
 +
We are left with:
 
<cmath>
 
<cmath>
 
\nu_d(P_k(q)) = \sum_{i = 1}^{k^2} \left\lfloor \frac{i}{d} \right\rfloor  
 
\nu_d(P_k(q)) = \sum_{i = 1}^{k^2} \left\lfloor \frac{i}{d} \right\rfloor  
Line 78: Line 75:
 
</cmath>
 
</cmath>
  
We simplify by combining the last two double sums:
+
We combine the last two double sums:
 
<cmath>
 
<cmath>
\sum_{j = 0}^{k - 1} \sum_{i = 1}^{j + k} \left\lfloor \frac{i}{d} \right\rfloor
+
\sum_{j = 0}^{k - 1} \sum_{i = j + 1}^{j + k} \left\lfloor \frac{i}{d} \right\rfloor.
- \sum_{j = 0}^{k - 1} \sum_{i = 1}^{j} \left\lfloor \frac{i}{d} \right\rfloor
 
= \sum_{j = 0}^{k - 1} \sum_{i = j + 1}^{j + k} \left\lfloor \frac{i}{d} \right\rfloor.
 
 
</cmath>
 
</cmath>
  
Thus we obtain
+
Thus,
 
<cmath>
 
<cmath>
 
\nu_d(P_k(q)) = \sum_{i = 1}^{k^2} \left\lfloor \frac{i}{d} \right\rfloor  
 
\nu_d(P_k(q)) = \sum_{i = 1}^{k^2} \left\lfloor \frac{i}{d} \right\rfloor  
Line 91: Line 86:
 
</cmath>
 
</cmath>
  
We now observe that for each <math>j</math>, the inner sum over <math>i</math> from <math>j+1</math> to <math>j+k</math> covers a block of <math>k</math> consecutive integers.   
+
Now observe: for each <math>j</math>, the inner sum covers a block of <math>k</math> consecutive integers.   
As <math>j</math> ranges from <math>0</math> to <math>k-1</math>, the total set of <math>i</math> values in these blocks is contained in <math>(0, k^2]</math>
+
As <math>j</math> runs from <math>0</math> to <math>k - 1</math>, the total collection of <math>i</math>'s lies within <math>[1, k^2]</math>, and each <math>i</math> appears at most once.
So each <math>i</math> appears at most once in the total sum. Hence,
+
So
 
<cmath>
 
<cmath>
 
\sum_{j = 0}^{k - 1} \sum_{i = j + 1}^{j + k} \left\lfloor \frac{i}{d} \right\rfloor \le \sum_{i = 1}^{k^2} \left\lfloor \frac{i}{d} \right\rfloor,
 
\sum_{j = 0}^{k - 1} \sum_{i = j + 1}^{j + k} \left\lfloor \frac{i}{d} \right\rfloor \le \sum_{i = 1}^{k^2} \left\lfloor \frac{i}{d} \right\rfloor,
Line 99: Line 94:
 
which implies
 
which implies
 
<cmath>
 
<cmath>
\nu_d(P_k(q)) \ge 0 \quad \text{for all } d \ge 1.
+
\nu_d(P_k(q)) \ge 0 \qquad \text{for all } d \ge 1.
 
</cmath>
 
</cmath>
  
Since each exponent of <math>(1 - q^d)</math> is non-negative, the denominator divides the numerator in <math>\mathbb Z[q]</math>. 
+
Since every factor <math>(1 - q^d)</math> appears with non-negative exponent, <math>P_k(q) \in \mathbb Z[q]</math>
Therefore <math>P_k(q) \in \mathbb Z[q]</math>, and evaluating at <math>q = 1</math> gives
+
Evaluating at <math>q = 1</math> gives
 
<cmath>
 
<cmath>
 
P_k(1) = (k^2)! \cdot \prod_{j = 0}^{k - 1} \frac{j!}{(j + k)!} \in \mathbb Z,
 
P_k(1) = (k^2)! \cdot \prod_{j = 0}^{k - 1} \frac{j!}{(j + k)!} \in \mathbb Z,
 
</cmath>
 
</cmath>
as desired.
+
as required.
 
~Lopkiloinm
 
~Lopkiloinm
  

Revision as of 02:14, 28 June 2025

Problem

Prove that for any positive integer $k,$ \[\left(k^2\right)!\cdot\prod_{j=0}^{k-1}\frac{j!}{\left(j+k\right)!}\] is an integer.

Solution 1

Define $v_p(N)$ for all rational numbers $N$ and primes $p$, where if $N=\frac{x}{y}$, then $v_p(N)=v_p(x)-v_p(y)$, and $v_p(x)$ is the greatest power of $p$ that divides $x$ for integer $x$. Note that the expression(that we're trying to prove is an integer) is clearly rational, call it $N$.

$v_p(N)=\sum_{i=1}^\infty \left\lfloor \frac{k^{2}}{p^{i}} \right\rfloor+\sum_{j=0}^{k-1} \sum_{i=1}^\infty \left\lfloor \frac{j}{p^{i}}\right\rfloor-\sum_{j=k}^{2k-1} \sum_{i=1}^\infty \left\lfloor \frac{j}{p^{i}} \right\rfloor$, by Legendre. Clearly, $\left\lfloor{\frac{x}{p}}\right\rfloor={\frac{x-r(x,p)}{p}}$, and $\sum_{i=0}^{k-1} r(i,m)\leq \sum_{i=k}^{2k-1} r(i,m)$, where $r(i,m)$ is the remainder function(we take out groups of $m$ which are just permutations of numbers $1$ to $m$ until there are less than $m$ left, then we have $m$ distinct values, which the minimum sum is attained at $0$ to $k-1$). Thus, $v_p(N)=\sum_{m=p^{i}, i\in \mathbb{N}_{+}}-\frac{k^{2}}{m}+\left\lfloor{\frac{k^{2}}{m}}\right\rfloor-\frac{\sum_{i=0}^{k-1} r(i,m)-\sum_{i=k}^{2k-1} r(i,m)}{m} \geq \sum_{m=p^{i}, i\in \mathbb{N}} \left\lceil -\frac{k^{2}}{m}+\lfloor{\frac{k^{2}}{m}}\rfloor\right\rceil \geq 0$, as the term in each summand is a sum of floors also and is clearly an integer.

Solution 2 (Controversial)

Consider an $k\times k$ grid, which is to be filled with the integers $1$ through $k^2$ such that the numbers in each row are in increasing order from left to right, and such that the numbers in each column are in increasing order from bottom to top. In other words, we are creating an $k\times k$ standard Young tableaux.

The Hook Length Formula is the source of the controversy, as it is very powerful and trivializes this problem. The Hook Length Formula states that the number of ways to create this standard Young tableaux (call this $N$ for convenience) is: \[N = \frac{\left(k^2\right)!}{\prod_{1\le i, j\le k}(i+j-1)}.\] Now, we do some simple rearrangement: \[N = \left(k^2\right)!\cdot\prod_{j=1}^{k}\prod_{i=1}^{k}\frac{1}{i+j-1} = \left(k^2\right)!\cdot\prod_{j=1}^{k}\frac{\left(j-1\right)!}{\left(j+k-1\right)!}\] \[= \left(k^2\right)!\cdot\prod_{j=0}^{k-1}\frac{j!}{\left(j+k\right)!}.\] This is exactly the expression given in the problem! Since the expression given in the problem equals the number of distinct $k\times k$ standard Young tableaux, it must be an integer, so we are done.

Solution 3 (Induction)

Define \[A(k) = \left(k^2\right)!\cdot\prod_{j=0}^{k-1}\frac{j!}{\left(j+k\right)!}.\] Clearly, $A(1) = 1$ and $A(2) = 2.$

Then \[\frac{A(k+1)}{A(k)} = \frac{\left(k^2+2k+1\right)!\cdot\prod_{j=0}^{k}\frac{j!}{\left(j+k+1\right)!}}{\left(k^2\right)!\cdot\prod_{j=0}^{k-1}\frac{j!}{\left(j+k\right)!}}.\] Lots of terms cancel, and we are left with \[\frac{A(k+1)}{A(k)} = \frac{(k^2+1)(k^2+2)\cdots(k^2+2k+1)}{2(2k+1)}.\] The numerator has $2k+1$ consecutive positive integers, so one of them must be divisible by $(2k+1).$ Also, there are $2k$ terms left, $k$ of which are even. We can choose one of these to cancel out the $2$ in the denominator. Therefore, the ratio between $A(k+1)$ and $A(k)$ is an integer. By our inductive hypothesis, $A(k)$ is an integer. Therefore, $A(k+1)$ is as well, and we are done.

Note: This is incorrect.

Solution 4

Throughout this proof we work in the polynomial ring $\mathbb Z[q]$.

For any positive integer $n$, define the $q$-integer and $q$-factorial by \[[n]_q := 1 + q + q^2 + \cdots + q^{n-1}, \qquad [n]_q! := \prod_{i=1}^n [i]_q.\] Each $[i]_q$ is a degree $i-1$ polynomial in $\mathbb Z[q]$, so $[n]_q! \in \mathbb Z[q]$. Evaluating at $q = 1$ gives $\lim_{q \to 1} [n]_q! = n!$.

Define the expression \[P_k(q) := [k^2]_q! \cdot \prod_{j = 0}^{k - 1} \frac{[j]_q!}{[j + k]_q!}.\]

Let $\nu_d(F)$ denote the exponent of $(1 - q^d)$ in a polynomial $F$. We use the identity \[\nu_d([n]_q!) = \sum_{i = 1}^{n} \left\lfloor \frac{i}{d} \right\rfloor - n \cdot \delta_{d, 1},\] where $\delta_{d,1} = 1$ if $d = 1$ and $0$ otherwise.

Apply this to $P_k(q)$: \[\nu_d(P_k(q)) = \nu_d([k^2]_q!)  + \sum_{j = 0}^{k - 1} \nu_d([j]_q!)  - \sum_{j = 0}^{k - 1} \nu_d([j + k]_q!).\]

Now expand each term using the formula: \[\nu_d(P_k(q)) =  \left( \sum_{i = 1}^{k^2} \left\lfloor \frac{i}{d} \right\rfloor - k^2 \delta_{d,1} \right) + \sum_{j = 0}^{k - 1} \left( \sum_{i = 1}^{j} \left\lfloor \frac{i}{d} \right\rfloor - j \delta_{d,1} \right) - \sum_{j = 0}^{k - 1} \left( \sum_{i = 1}^{j + k} \left\lfloor \frac{i}{d} \right\rfloor - (j + k) \delta_{d,1} \right).\]

Handle the $\delta_{d,1}$ terms separately: \[-k^2 - \sum_{j=0}^{k-1} j + \sum_{j=0}^{k-1} (j + k) = -k^2 - \frac{k(k - 1)}{2} + \left( \frac{k(k - 1)}{2} + k^2 \right) = 0.\]

So all the $\delta_{d,1}$ terms cancel. We are left with: \[\nu_d(P_k(q)) = \sum_{i = 1}^{k^2} \left\lfloor \frac{i}{d} \right\rfloor  + \sum_{j = 0}^{k - 1} \sum_{i = 1}^{j} \left\lfloor \frac{i}{d} \right\rfloor  - \sum_{j = 0}^{k - 1} \sum_{i = 1}^{j + k} \left\lfloor \frac{i}{d} \right\rfloor.\]

We combine the last two double sums: \[\sum_{j = 0}^{k - 1} \sum_{i = j + 1}^{j + k} \left\lfloor \frac{i}{d} \right\rfloor.\]

Thus, \[\nu_d(P_k(q)) = \sum_{i = 1}^{k^2} \left\lfloor \frac{i}{d} \right\rfloor  - \sum_{j = 0}^{k - 1} \sum_{i = j + 1}^{j + k} \left\lfloor \frac{i}{d} \right\rfloor.\]

Now observe: for each $j$, the inner sum covers a block of $k$ consecutive integers. As $j$ runs from $0$ to $k - 1$, the total collection of $i$'s lies within $[1, k^2]$, and each $i$ appears at most once. So \[\sum_{j = 0}^{k - 1} \sum_{i = j + 1}^{j + k} \left\lfloor \frac{i}{d} \right\rfloor \le \sum_{i = 1}^{k^2} \left\lfloor \frac{i}{d} \right\rfloor,\] which implies \[\nu_d(P_k(q)) \ge 0 \qquad \text{for all } d \ge 1.\]

Since every factor $(1 - q^d)$ appears with non-negative exponent, $P_k(q) \in \mathbb Z[q]$. Evaluating at $q = 1$ gives \[P_k(1) = (k^2)! \cdot \prod_{j = 0}^{k - 1} \frac{j!}{(j + k)!} \in \mathbb Z,\] as required. ~Lopkiloinm

Note: This solution is fundamentally different from the first, which works purely in the integers. Here, we work in the integer polynomial ring $\mathbb{Z}[q]$—a graded algebra—which allows us to test integrality by tracking the multiplicities of reducible elements like $1 - q^d$ for all integers $1 \le d \le k^2$. In contrast, working in $\mathbb{Z}$—a non-graded algebra—requires using $p$-adic valuations via Legendre’s formula, which only considers irreducibles (primes). The graded structure of $\mathbb{Z}[q]$ simplifies the analysis, making it a powerful strategy to lift problems into a graded setting whenever possible.

See also

2016 USAMO (ProblemsResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6
All USAMO Problems and Solutions