Difference between revisions of "1980 AHSME Problems/Problem 4"

Line 20: Line 20:
 
== Solution ==
 
== Solution ==
  
 
+
Since <math>ABCD</math> and <math>DEFG</math> are squares, <math>\angle ADC = \angle GDE = 90^\circ</math>.  Since <math>CDE</math> is equilateral, <math>\angle CDE = 60^\circ</math>.  So <math>\angle GDA=360^\circ-90^\circ-60^\circ-90^\circ= \boxed{(\textbf{C})\ 120^\circ} </math>.
 
 
<math> \angle GDA=360^\circ-90^\circ-60^\circ-90^\circ=120^\circ\Rightarrow\boxed{C} </math>
 
  
 
== See also ==
 
== See also ==
 
{{AHSME box|year=1980|num-b=3|num-a=5}}
 
{{AHSME box|year=1980|num-b=3|num-a=5}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 01:25, 14 July 2025

Problem

In the adjoining figure, $CDE$ is an equilateral triangle and $ABCD$ and $DEFG$ are squares. The measure of $\angle GDA$ is

$\text{(A)} \ 90^\circ \qquad \text{(B)} \ 105^\circ \qquad \text{(C)} \ 120^\circ \qquad \text{(D)} \ 135^\circ \qquad \text{(E)} \ 150^\circ$

[asy] defaultpen(linewidth(0.7)+fontsize(10)); pair D=origin, C=D+dir(240), E=D+dir(300), F=E+dir(30), G=D+dir(30), A=D+dir(150), B=C+dir(150); draw(E--D--G--F--E--C--D--A--B--C); pair point=(0,0.5); label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$D$", D, dir(-15)); label("$E$", E, dir(point--E)); label("$F$", F, dir(point--F)); label("$G$", G, dir(point--G));[/asy]

Solution

Since $ABCD$ and $DEFG$ are squares, $\angle ADC = \angle GDE = 90^\circ$. Since $CDE$ is equilateral, $\angle CDE = 60^\circ$. So $\angle GDA=360^\circ-90^\circ-60^\circ-90^\circ= \boxed{(\textbf{C})\ 120^\circ}$.

See also

1980 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png