Difference between revisions of "2025 IMO Problems/Problem 1"
Mathcosine (talk | contribs) (→Solution 1) |
m (→Video Solution) |
||
Line 36: | Line 36: | ||
https://youtu.be/4K6wbEuNooI [includes exploration to show motivation behind arguement] | https://youtu.be/4K6wbEuNooI [includes exploration to show motivation behind arguement] | ||
+ | |||
+ | https://www.youtube.com/watch?v=n2Ct4z0eUhg |
Revision as of 21:22, 17 July 2025
A line in the plane is called sunny if it is not parallel to any of the –axis, the
–axis, or the line
.
Let be a given integer. Determine all nonnegative integers
such that there exist
distinct lines in the plane satisfying both of the following:
- For all positive integers
and
with
, the point
lies on at least one of the lines; and
- Exactly
of the
lines are sunny.
Solution 1
Consider a valid construction for .
\Proof: Assume for the sake of contradiction not. Then, the following holds:
Otherwise, two points with
are on the same line. This implies that each point with
-coordinate
must lie on distinct lines, hence there exists a bijection between the lines and points with
-coordinate
. It follows with similar reasoning that:
Consider the points on
that are not
or
. Then, because there exists a bijection, any such point must have a line through a point with
-coordinate
and
-coordinate
that are not
or
(otherwise
exists). But this cannot be possible if the point is not
. Since
, by the Pigeonhole Principle there must be at least
point that has to pass through this condition, hence we have proved the claim.
---
Hence, remove one of the or
lines. We then get a valid covering for
with the same number of sunny lines! Thus, any possible number of sunny lines for
must be possible for
.
For
, we have possibilities
. By our induction above, we conclude that for any
, the possible
is a subset of
.
~MC
Video Solution
https://www.youtube.com/watch?v=kJVQqugw_JI [includes motivational discussion]
https://youtu.be/4K6wbEuNooI [includes exploration to show motivation behind arguement]