Difference between revisions of "2018 MPFG Problem 18"
(→Solution 1) |
(→Solution 1) |
||
Line 12: | Line 12: | ||
<math> = (x-1) \cdot (x-w_1)(x-w_2)......(x-w_{15})</math> <math>(\#)</math> | <math> = (x-1) \cdot (x-w_1)(x-w_2)......(x-w_{15})</math> <math>(\#)</math> | ||
− | + | <math>\space</math> <math>\space</math> <math>\space</math> <math>\cdot (x-\overline{w_1})(x-\overline{w_2})......(x-\overline{w_{15}})</math> <math>(\#\#)</math> | |
(Remind that <math>w^k</math> and <math>w_k</math> are not the same!) | (Remind that <math>w^k</math> and <math>w_k</math> are not the same!) | ||
Line 20: | Line 20: | ||
When x is real, <math>\left|(\#)\right| = \left|(\#\#)\right|</math>. | When x is real, <math>\left|(\#)\right| = \left|(\#\#)\right|</math>. | ||
− | <math>\left|x^{31}-1\right| = \left|x-1\right| </math> | + | <math>\left|x^{31}-1\right| = \left|x-1\right| \cdot \left|(\#)\right| \cdot \left|(\#\#)\right| = \left|x-1\right| \cdot \left|(\#)^2\right|</math> |
Substitute with <math>x = -1</math>, we get <math>\left|(\#)\right| = 1</math> | Substitute with <math>x = -1</math>, we get <math>\left|(\#)\right| = 1</math> |
Revision as of 12:17, 25 August 2025
Problem
Evaluate the expression
Solution 1
(Remind that and
are not the same!)
()
When x is real, .
Substitute with , we get
Therefore
~cassphe