Difference between revisions of "2018 MPFG Problem 18"
(→Solution 1) |
(→Solution 1) |
||
Line 18: | Line 18: | ||
(<math>w^k = e^\frac{2\pi ik}{31}, w_k = e^\frac{2\pi ik^{2}}{31}</math>) | (<math>w^k = e^\frac{2\pi ik}{31}, w_k = e^\frac{2\pi ik^{2}}{31}</math>) | ||
− | When x is real, <math>\left|(\#)\right| = \left|(\#\#)\right|</math>. | + | When <math>x</math> is real, <math>\left|(\#)\right| = \left|(\#\#)\right|</math>. |
<math>\left|x^{31}-1\right| = \left|x-1\right| \cdot \left|(\#)\right| \cdot \left|(\#\#)\right| = \left|x-1\right| \cdot \left|(\#)^2\right|</math> | <math>\left|x^{31}-1\right| = \left|x-1\right| \cdot \left|(\#)\right| \cdot \left|(\#\#)\right| = \left|x-1\right| \cdot \left|(\#)^2\right|</math> |
Latest revision as of 12:23, 25 August 2025
Problem
Evaluate the expression
Solution 1
(Remind that and
are not the same!)
()
When is real,
.
Substitute with , we get
Therefore
~cassphe