Difference between revisions of "2025 SSMO Speed Round Problems/Problem 4"
(→Solution) |
(→Solution) |
||
Line 10: | Line 10: | ||
point B=dir(aSin(0.47)); point C=dir(180-aSin(0.47)); point D=dir(180+aSin(0.47)); point A=dir(-aSin(0.47)); | point B=dir(aSin(0.47)); point C=dir(180-aSin(0.47)); point D=dir(180+aSin(0.47)); point A=dir(-aSin(0.47)); | ||
− | + | point X=dir(180-3*aSin(0.47)); | |
+ | point Y=intersectionpoint(line(C,D),line(B,X)); | ||
draw(A--B--C--D--cycle,p=black+0.3mm); | draw(A--B--C--D--cycle,p=black+0.3mm); | ||
draw(unitcircle,p=blue+0.3mm); | draw(unitcircle,p=blue+0.3mm); | ||
+ | draw(1.4*B-0.4*Y--1.2*Y-0.2*B,p=red+0.3mm); | ||
+ | draw(C--Y,dashed); | ||
+ | draw(A--C,dashed+red); | ||
dot(A,linewidth(4)); dot(B,linewidth(4)); dot(C,linewidth(4)); dot(D,linewidth(4)); | dot(A,linewidth(4)); dot(B,linewidth(4)); dot(C,linewidth(4)); dot(D,linewidth(4)); | ||
+ | dot(X,linewidth(4)); dot(Y,linewidth(4)); | ||
− | label("$A$",A,dir(45)); | + | label("$A$",A,dir(-45)); |
− | label("$B$",B,dir( | + | label("$B$",B,dir(45)); |
− | label("$C$",C,dir( | + | label("$C$",C,dir(145)); |
− | label("$D$",D,dir( | + | label("$D$",D,dir(215)); |
label("$\omega$",(0,-0.9)); | label("$\omega$",(0,-0.9)); | ||
+ | label("$\ell$",1.3*B-0.3*Y,dir(45)); | ||
+ | label("$X$",X,dir(90)); | ||
+ | label("$Y$",Y,dir(75)); | ||
</asy> | </asy> | ||
+ | |||
+ | Extend <math>CD</math> to intersect <math>\ell</math> at point <math>Y</math>. Note that <math>AB\parallel CY</math> and <math>AC\parallel BY</math>, so <math>ABYC</math> is a parallelogram. This implies that <math>BY = AC = \sqrt{8^2+15^2} = 17</math> and <math>CY = AB = 8</math>. Let <math>t = BX</math>. By power of a point on <math>Y</math> with respect to <math>\omega</math>, we have <math>XY\cdot BY = CY\cdot DY</math>. We know that <math>CY = 8</math>, <math>DY = 16</math>, <math>BY = 17</math>, and <math>XY = 17-t</math>. Thus, | ||
+ | <cmath>17(17-t) = 128.</cmath> | ||
+ | Solving this equation yields <math>t=\tfrac{161}{17}</math>, and we extract <math>161+17 = \boxed{178}</math>. |
Revision as of 16:06, 9 September 2025
Problem
In rectangle let
be the circumcircle of
,
be the line through
parallel to
and
be the intersection of
and
. Suppose the value of
can be expressed as
where
and
are relatively prime positive integers. Find
.
Solution
Extend to intersect
at point
. Note that
and
, so
is a parallelogram. This implies that
and
. Let
. By power of a point on
with respect to
, we have
. We know that
,
,
, and
. Thus,
Solving this equation yields
, and we extract
.