Difference between revisions of "2023 SSMO Accuracy Round Problems/Problem 7"
Line 15: | Line 15: | ||
<asy> | <asy> | ||
size(4cm); | size(4cm); | ||
− | |||
− | |||
− | |||
− | + | pair o = (0,0); | |
− | + | pair p = (sqrt(58), 0); | |
− | |||
− | + | path out = circle(o, 5); | |
− | + | path inn = circle(o, 3); | |
− | + | filldraw(inn, lightgreen+opacity(0.2), green); | |
+ | filldraw(out, lightgreen+opacity(0.2), green); | ||
− | a = ac[0]; | + | pair[] ac = intersectionpoints(circle(p, 3), out); |
− | c = ac[1]; | + | |
− | b = intersectionpoints | + | pair a = ac[0]; |
− | d = intersectionpoints | + | pair c = ac[1]; |
− | m = intersectionpoints | + | pair b = intersectionpoints(p--a, out)[0]; |
− | n = intersectionpoints | + | pair d = intersectionpoints(p--c, out)[1]; |
− | t = intersectionpoint | + | pair m = intersectionpoints(p--a, inn)[0]; |
+ | pair n = intersectionpoints(p--c, inn)[0]; | ||
+ | pair t = intersectionpoint(o--p, a--c); | ||
draw(b--p--d, blue); | draw(b--p--d, blue); | ||
Line 45: | Line 44: | ||
dot("$B$", b, dir(240)); | dot("$B$", b, dir(240)); | ||
dot("$D$", d, dir(135)); | dot("$D$", d, dir(135)); | ||
− | |||
dot("$M$", m, dir(330)); | dot("$M$", m, dir(330)); | ||
dot("$N$", n, dir(60)); | dot("$N$", n, dir(60)); | ||
dot("$T$", t, dir(135)); | dot("$T$", t, dir(135)); | ||
+ | dot("$P$", p, dir(45)); | ||
+ | dot("$O$", o, dir(45)); | ||
+ | |||
+ | clip((20,20)--(-20,20)--(-20,-20)--(20,-20)--cycle); | ||
+ | </asy> | ||
+ | |||
+ | We now proceed with the other case. | ||
+ | |||
+ | We solve to get <math>OP = \sqrt{10}</math> and <math>PM = PN = 1</math>. | ||
+ | |||
+ | Once again, <math>\triangle NOP \sim \triangle CTP</math>, and since | ||
+ | <cmath>[NOP] = \frac{1}{2} \cdot 3 \cdot 1 = \frac{3}{2},</cmath> | ||
+ | it follows that | ||
+ | <cmath>[CTP] = [NOP] \cdot \left(\frac{CP}{OP}\right)^2 = \frac{3}{2} \cdot \frac{9}{10} = \frac{27}{20},</cmath> | ||
+ | so | ||
+ | <cmath>[PAC] = 2 \cdot [CTP] = \frac{27}{10} \quad \text{and} \quad [PAD] = \frac{9}{2}.</cmath> | ||
+ | |||
+ | <asy> | ||
+ | size(4cm); | ||
+ | |||
+ | pair o = (0,0); | ||
+ | pair p = (sqrt(10), 0); | ||
+ | |||
+ | path out = circle(o, 5); | ||
+ | path inn = circle(o, 3); | ||
+ | |||
+ | filldraw(inn, lightgreen + opacity(0.2), green); | ||
+ | filldraw(out, lightgreen + opacity(0.2), green); | ||
+ | |||
+ | pair[] ac = intersectionpoints(circle(p, 3), out); | ||
+ | pair a = ac[0]; | ||
+ | pair c = ac[1]; | ||
+ | pair b = intersectionpoints(p--a, out)[1]; | ||
+ | pair d = intersectionpoints(p--c, out)[0]; | ||
+ | pair m = intersectionpoints(p--a, inn)[0]; | ||
+ | pair n = intersectionpoints(p--c, inn)[0]; | ||
+ | pair t = intersectionpoint(o--p, a--c); | ||
+ | |||
+ | draw(a--b, blue); | ||
+ | draw(c--d, blue); | ||
+ | draw(n--o--m, dashed + green); | ||
+ | draw(c--a, blue + dashed); | ||
+ | draw(o--p, blue + dashed); | ||
+ | |||
+ | dot("$A$", a, dir(345)); | ||
+ | dot("$C$", c, dir(55)); | ||
+ | dot("$B$", b, dir(240)); | ||
+ | dot("$D$", d, dir(135)); | ||
+ | dot("$M$", m, dir(135)); | ||
+ | dot("$N$", n, dir(225)); | ||
+ | dot("$T$", t, dir(0)); | ||
dot("$P$", p, dir(45)); | dot("$P$", p, dir(45)); | ||
dot("$O$", o, dir(45)); | dot("$O$", o, dir(45)); | ||
Line 55: | Line 104: | ||
clip((20,20)--(-20,20)--(-20,-20)--(20,-20)--cycle); | clip((20,20)--(-20,20)--(-20,-20)--(20,-20)--cycle); | ||
</asy> | </asy> | ||
+ | |||
+ | The sum of the areas is thus <math>\frac{477}{29}</math> and the answer is <math>\boxed{506}</math> |
Revision as of 21:07, 9 September 2025
Problem
Concentric circles and
are drawn, with radii
and
respectively. Chords
and
of
are both tangent to
and intersect at
If
then the sum of all possible distinct values of
can be expressed as
for relatively prime positive integers
and
Find
Solution
There are two cases. First, consider the case where lies outside the circle.
Using the Pythagorean theorem, we find that . We also have
.
Let be the midpoint of
, which lies on
by symmetry. Then
, so since
it follows that
and thus
Note that and
, so
size(4cm); pair o = (0,0); pair p = (sqrt(58), 0); path out = circle(o, 5); path inn = circle(o, 3); filldraw(inn, lightgreen+opacity(0.2), green); filldraw(out, lightgreen+opacity(0.2), green); pair[] ac = intersectionpoints(circle(p, 3), out); pair a = ac[0]; pair c = ac[1]; pair b = intersectionpoints(p--a, out)[0]; pair d = intersectionpoints(p--c, out)[1]; pair m = intersectionpoints(p--a, inn)[0]; pair n = intersectionpoints(p--c, inn)[0]; pair t = intersectionpoint(o--p, a--c); draw(b--p--d, blue); draw(n--o--m, dashed+green); draw(c--a, blue+dashed); draw(o--p, blue+dashed); dot("$A$", a, dir(345)); dot("$C$", c, dir(55)); dot("$B$", b, dir(240)); dot("$D$", d, dir(135)); dot("$M$", m, dir(330)); dot("$N$", n, dir(60)); dot("$T$", t, dir(135)); dot("$P$", p, dir(45)); dot("$O$", o, dir(45)); clip((20,20)--(-20,20)--(-20,-20)--(20,-20)--cycle); (Error making remote request. Unknown error_msg)
We now proceed with the other case.
We solve to get and
.
Once again, , and since
it follows that
so
size(4cm); pair o = (0,0); pair p = (sqrt(10), 0); path out = circle(o, 5); path inn = circle(o, 3); filldraw(inn, lightgreen + opacity(0.2), green); filldraw(out, lightgreen + opacity(0.2), green); pair[] ac = intersectionpoints(circle(p, 3), out); pair a = ac[0]; pair c = ac[1]; pair b = intersectionpoints(p--a, out)[1]; pair d = intersectionpoints(p--c, out)[0]; pair m = intersectionpoints(p--a, inn)[0]; pair n = intersectionpoints(p--c, inn)[0]; pair t = intersectionpoint(o--p, a--c); draw(a--b, blue); draw(c--d, blue); draw(n--o--m, dashed + green); draw(c--a, blue + dashed); draw(o--p, blue + dashed); dot("$A$", a, dir(345)); dot("$C$", c, dir(55)); dot("$B$", b, dir(240)); dot("$D$", d, dir(135)); dot("$M$", m, dir(135)); dot("$N$", n, dir(225)); dot("$T$", t, dir(0)); dot("$P$", p, dir(45)); dot("$O$", o, dir(45)); clip((20,20)--(-20,20)--(-20,-20)--(20,-20)--cycle); (Error making remote request. Unknown error_msg)
The sum of the areas is thus and the answer is