Difference between revisions of "2023 SSMO Accuracy Round Problems/Problem 7"
Line 16: | Line 16: | ||
size(4cm); | size(4cm); | ||
− | pair | + | pair O = (0,0); |
− | pair | + | pair P = (7.6158,0); |
− | + | filldraw(circle(O,3), lightgreen, green); | |
− | + | filldraw(circle(O,5), lightgreen, green); | |
− | + | pair A = (6.9, 2.6); | |
− | + | pair C = (6.9, -2.6); | |
+ | pair B = (9.7, 3.8); | ||
+ | pair D = (9.7, -3.8); | ||
+ | pair M = (4.1, 1.6); | ||
+ | pair N = (4.1, -1.6); | ||
+ | pair T = (3.5, 0); | ||
− | + | draw(B--P--D, blue); | |
+ | draw(N--O--M, dashed+green); | ||
+ | draw(C--A, dashed+blue); | ||
+ | draw(O--P, dashed+blue); | ||
− | + | dot("$A$", A, dir(345)); | |
− | + | dot("$C$", C, dir(55)); | |
− | + | dot("$B$", B, dir(240)); | |
− | + | dot("$D$", D, dir(135)); | |
− | + | dot("$M$", M, dir(330)); | |
− | + | dot("$N$", N, dir(60)); | |
− | + | dot("$T$", T, dir(135)); | |
− | + | dot("$P$", P, dir(45)); | |
− | + | dot("$O$", O, dir(45)); | |
− | |||
− | |||
− | |||
− | |||
− | dot("$A$", | ||
− | dot("$C$", | ||
− | dot("$B$", | ||
− | dot("$D$", | ||
− | dot("$M$", | ||
− | dot("$N$", | ||
− | dot("$T$", | ||
− | dot("$P$", | ||
− | dot("$O$", | ||
clip((20,20)--(-20,20)--(-20,-20)--(20,-20)--cycle); | clip((20,20)--(-20,20)--(-20,-20)--(20,-20)--cycle); | ||
Line 67: | Line 62: | ||
size(4cm); | size(4cm); | ||
− | pair | + | pair O = (0,0); |
− | pair | + | pair P = (3.16, 0); |
− | path | + | path outer = Circle(O, 5); |
− | path | + | path inner = Circle(O, 3); |
− | filldraw( | + | filldraw(outer, lightgreen, green); |
− | filldraw( | + | filldraw(inner, lightgreen, green); |
− | pair | + | pair A = (2.2, 2.6); |
+ | pair B = (5, 6); | ||
+ | pair C = (2.2, -2.6); | ||
+ | pair D = (5, -6); | ||
+ | pair M = (1.3, 1.6); | ||
+ | pair N = (1.3, -1.6); | ||
+ | pair T = (1.1, 0); | ||
− | + | draw(A--B, blue); | |
− | + | draw(C--D, blue); | |
− | + | draw(N--O--M, dashed+green); | |
− | + | draw(A--C, blue+dashed); | |
− | + | draw(O--P, blue+dashed); | |
− | |||
− | |||
− | + | dot("$A$", A, NE); | |
− | + | dot("$B$", B, NE); | |
− | + | dot("$C$", C, SE); | |
− | + | dot("$D$", D, SE); | |
− | + | dot("$M$", M, N); | |
− | + | dot("$N$", N, S); | |
− | dot("$A$", | + | dot("$T$", T, dir(0)); |
− | dot("$ | + | dot("$O$", O, dir(135)); |
− | dot("$ | + | dot("$P$", P, dir(45)); |
− | dot("$D$", | ||
− | dot("$M$", | ||
− | dot("$N$", | ||
− | dot("$T$", | ||
− | dot("$ | ||
− | dot("$ | ||
− | |||
− | |||
</asy> | </asy> | ||
The sum of the areas is thus <math>\frac{477}{29}</math> and the answer is <math>\boxed{506}</math> | The sum of the areas is thus <math>\frac{477}{29}</math> and the answer is <math>\boxed{506}</math> |
Revision as of 21:09, 9 September 2025
Problem
Concentric circles and
are drawn, with radii
and
respectively. Chords
and
of
are both tangent to
and intersect at
If
then the sum of all possible distinct values of
can be expressed as
for relatively prime positive integers
and
Find
Solution
There are two cases. First, consider the case where lies outside the circle.
Using the Pythagorean theorem, we find that . We also have
.
Let be the midpoint of
, which lies on
by symmetry. Then
, so since
it follows that
and thus
Note that and
, so
We now proceed with the other case.
We solve to get and
.
Once again, , and since
it follows that
so
The sum of the areas is thus and the answer is