Difference between revisions of "2023 AMC 12B Problems/Problem 24"
Pinotation (talk | contribs) |
Pinotation (talk | contribs) |
||
Line 17: | Line 17: | ||
The real answer to the problem lies between the conversion of \( \text{lcm}(a,b) \times \text{lcm}(c,d) \) to \( \text{gcd}(a,b,c,d) \). We assume \( \text{lcm}(a,b,c,d) = \text{lcm}(a,b) \times \text{lcm}(b,c) \). Then, because \( \text{lcm}(a,b) = 2^3 \times 3^2 \times 5^3 \) and \( \text{lcm}(c,d) = 2^2 \times 3^3 \times 5^2 \), we see \( \text{lcm}(a,b,c,d)=2^6 \times 3^6 \times 5^6 \). We know \( \text{gcd}(x,y,\dots) = \frac{|x-y-\dots|}{\text{lcm}(x,y,\dots)} \). So then, substitution shows us \( \text{gcd}(a,b,c,d)=\frac{|2^6-3^6-5^6|}{2^6 \times 3^6 \times 5^6} \approx 2.23 \). We stated that the answer lies between this conversion, and the nearest answer choice is <math>\boxed{\textbf{(C) 3}} | The real answer to the problem lies between the conversion of \( \text{lcm}(a,b) \times \text{lcm}(c,d) \) to \( \text{gcd}(a,b,c,d) \). We assume \( \text{lcm}(a,b,c,d) = \text{lcm}(a,b) \times \text{lcm}(b,c) \). Then, because \( \text{lcm}(a,b) = 2^3 \times 3^2 \times 5^3 \) and \( \text{lcm}(c,d) = 2^2 \times 3^3 \times 5^2 \), we see \( \text{lcm}(a,b,c,d)=2^6 \times 3^6 \times 5^6 \). We know \( \text{gcd}(x,y,\dots) = \frac{|x-y-\dots|}{\text{lcm}(x,y,\dots)} \). So then, substitution shows us \( \text{gcd}(a,b,c,d)=\frac{|2^6-3^6-5^6|}{2^6 \times 3^6 \times 5^6} \approx 2.23 \). We stated that the answer lies between this conversion, and the nearest answer choice is <math>\boxed{\textbf{(C) 3}} | ||
+ | |||
+ | ~Pinotation | ||
==Solution 2== | ==Solution 2== |
Revision as of 01:40, 19 September 2025
Problem
Suppose that ,
,
and
are positive integers satisfying all of the following relations.
What is ?
Solution 1 (Guesstimation)
The real answer to the problem lies between the conversion of \( \text{lcm}(a,b) \times \text{lcm}(c,d) \) to \( \text{gcd}(a,b,c,d) \). We assume \( \text{lcm}(a,b,c,d) = \text{lcm}(a,b) \times \text{lcm}(b,c) \). Then, because \( \text{lcm}(a,b) = 2^3 \times 3^2 \times 5^3 \) and \( \text{lcm}(c,d) = 2^2 \times 3^3 \times 5^2 \), we see \( \text{lcm}(a,b,c,d)=2^6 \times 3^6 \times 5^6 \). We know \( \text{gcd}(x,y,\dots) = \frac{|x-y-\dots|}{\text{lcm}(x,y,\dots)} \). So then, substitution shows us \( \text{gcd}(a,b,c,d)=\frac{|2^6-3^6-5^6|}{2^6 \times 3^6 \times 5^6} \approx 2.23 \). We stated that the answer lies between this conversion, and the nearest answer choice is $\boxed{\textbf{(C) 3}}
~Pinotation
==Solution 2==
Denote by$ (Error compiling LaTeX. Unknown error_msg)\nu_p (x)p
x$.
We index Equations given in this problem from (1) to (7).
First, we compute$ (Error compiling LaTeX. Unknown error_msg)\nu_2 (x)x \in \left\{ a, b, c, d \right\}$.
Equation (5) implies$ (Error compiling LaTeX. Unknown error_msg)\max \left\{ \nu_2 (b), \nu_2 (c) \right\} = 1\max \left\{ \nu_2 (a), \nu_2 (b) \right\} = 3
\max \left\{ \nu_2 (b), \nu_2 (d) \right\} = 2
\nu_2 (a) + \nu_2 (b) + \nu_2 (c) + \nu_2 (d) = 6$.
Therefore, all above jointly imply$ (Error compiling LaTeX. Unknown error_msg)\nu_2 (a) = 3\nu_2 (d) = 2
\left( \nu_2 (b), \nu_2 (c) \right) = \left( 0 , 1 \right)
\left( 1, 0 \right)$.
Second, we compute$ (Error compiling LaTeX. Unknown error_msg)\nu_3 (x)x \in \left\{ a, b, c, d \right\}$.
Equation (2) implies$ (Error compiling LaTeX. Unknown error_msg)\max \left\{ \nu_3 (a), \nu_3 (b) \right\} = 2\max \left\{ \nu_3 (a), \nu_3 (c) \right\} = 3
\max \left\{ \nu_3 (a), \nu_3 (d) \right\} = 3
\nu_3 (a) + \nu_3 (b) + \nu_3 (c) + \nu_3 (d) = 9$.
Therefore, all above jointly imply$ (Error compiling LaTeX. Unknown error_msg)\nu_3 (c) = 3\nu_3 (d) = 3
\left( \nu_3 (a), \nu_3 (b) \right) = \left( 1 , 2 \right)
\left( 2, 1 \right)$.
Third, we compute$ (Error compiling LaTeX. Unknown error_msg)\nu_5 (x)x \in \left\{ a, b, c, d \right\}$.
Equation (5) implies$ (Error compiling LaTeX. Unknown error_msg)\max \left\{ \nu_5 (b), \nu_5 (c) \right\} = 2\max \left\{ \nu_5 (a), \nu_5 (b) \right\} = 3
\nu_5 (a) = 3$.
From Equations (5)-(7), we have either$ (Error compiling LaTeX. Unknown error_msg)\nu_5 (b) \leq 1\nu_5 (c) = \nu_5 (d) = 2
\nu_5 (b) = 2
\max \left\{ \nu_5 (c), \nu_5 (d) \right\} = 2$.
Equation (1) implies$ (Error compiling LaTeX. Unknown error_msg)\nu_5 (a) + \nu_5 (b) + \nu_5 (c) + \nu_5 (d) = 7\nu_5 (b)
\nu_5 (c)
\nu_5 (d)$, there must be two 2s and one 0.
Therefore, <cmath> \begin{align*} {\rm gcd} (a,b,c,d) & = \Pi_{p \in \{ 2, 3, 5\}} p^{\min\{ \nu_p (a), \nu_p(b) , \nu_p (c), \nu_p(d) \}} \\ & = 2^0 \cdot 3^1 \cdot 5^0 \\ & = \boxed{\textbf{(C) 3}}. \end{align*} </cmath>
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
==Solution 3 (GCD/LCM Comparison)==
We are given that$ (Error compiling LaTeX. Unknown error_msg)abcd = 2^6 \cdot 3^9 \cdot 5^7\[
\mathrm{lcm}(a,b) \cdot \mathrm{lcm}(c,d) = (2^3 \cdot 3^2 \cdot 5^3) \cdot (2^2 \cdot 3^3 \cdot 5^2) = 2^{5} \cdot 3^{5} \cdot 5^{5}.
\]
abcd
\[
abcd = 2^6 \cdot 3^9 \cdot 5^7 = \mathrm{lcm}(a,b) \cdot \mathrm{lcm}(c,d) \cdot 2^1 \cdot 3^4 \cdot 5^2.
\]
2^1 \cdot 3^4 \cdot 5^2
a
b
c
d$, which are their common divisors.
The key observation is that the only prime with a leftover exponent greater than 3 is 3 (specifically,$ (Error compiling LaTeX. Unknown error_msg)3^4$), which suggests that all four numbers share at least one factor of 3.
For primes 2 and 5, the leftover exponents are too small (1 and 2, respectively) to be shared by all four numbers, since the GCD exponent must be the minimum exponent among$ (Error compiling LaTeX. Unknown error_msg)ab
c
d$.
Thus, the only possible nontrivial common factor among$ (Error compiling LaTeX. Unknown error_msg)ab
c
d$ is 3.
Therefore,
\[ \gcd(a,b,c,d) = \boxed {3}. \]
~Mewoooow
Video Solution
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
See Also
2023 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 23 |
Followed by Problem 25 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.