During AMC testing, the AoPS Wiki is in read-only mode and no edits can be made.

Difference between revisions of "2013 AMC 10A Problems/Problem 8"

m (Solution 2)
(Solution 3)
Line 21: Line 21:
 
~Education, the Study of Everything
 
~Education, the Study of Everything
  
 +
==Solution 3==
 +
We observe that all the answer choices other than <math>\textbf{(C)}</math> are integer.
 +
Claim: <math>\frac{2^{2014}+2^{2012}}{2^{2014}-2^{2012}}</math> is not an integer.
 +
Proof:
 +
We know that if <math>b>a</math> and <math>\operatorname{gcd}(a,b) = a</math>, then <math>a|b</math>. So all we need to prove is that <math>\operatorname{gcd}(2^{2014}+2^{2012}, 2^{2014}-2^{2012}) \neq 2^{2014}+2^{2012} \text{ or } 2^{2014}-2^{2012}</math>. Since the numerator is larger than the denominator, the only possible case is <math>\gcd(2^{2014}+2^{2012}, 2^{2014}-2^{2012}) = 2^{2014}-2^{2012}</math>. We have to prove that this is impossible. Using the Euclidean Algorithm we can simplify to obtain
 +
\begin{align*}
 +
\gcd(2^{2014}+2^{2012}, 2^{2014}-2^{2012}) &= \gcd(2^{2014}+2^{2012}-2^{2014}+2^{2012}, 2^{2014}-2^{2012})\\
 +
&= \gcd(2 \cdot 2^{2012}, 2^{2014}-2^{2012})\\
 +
&= \gcd(2^{2013}, 2^{2014}-2^{2012})
 +
\end{align*}
 +
We notice that <math>2^{2014}-2^{2012}</math> can be factored since <math>2^{2012}</math> is a common factor. Factoring gives us <math>2^{2014}-2^{2012} = 2^{2012}(2^2-1) = 3 \cdot 2^{2012}</math>. From this we know that <math>3</math> is a factor of the original expression. Hence <math>\gcd(2^{2013}, 2^{2014}-2^{2012}) = \gcd(2^{2013}, 3 \cdot 2^{2012}) = 2^{2013} \neq 2^{2012} \cdot 3</math>. So <math>2^{2014}-2^{2012} \nmid 2^{2014}+2^{2012}</math>. So the fraction cannot be simplified into an integer. Hence the answer is the only fraction, <math>\boxed{\textbf{(C)}}</math>.
 +
 +
~JerryZYang
  
 
==Video Solution==
 
==Video Solution==

Revision as of 22:54, 2 November 2025

Problem

What is the value of \[\frac{2^{2014}+2^{2012}}{2^{2014}-2^{2012}} ?\]

$\textbf{(A)}\ -1 \qquad\textbf{(B)}\ 1  \qquad\textbf{(C)}\ \frac{5}{3} \qquad\textbf{(D)}\ 2013 \qquad\textbf{(E)}\ 2^{4024}$

Solution

Factoring out, we get: $\frac{2^{2012}(2^2 + 1)}{2^{2012}(2^2-1)}$.

Cancelling out the $2^{2012}$ from the numerator and denominator, we see that it simplifies to $\boxed{\textbf{(C) }\frac{5}{3}}$.

Solution 2

Let $x=2^{2012}$.

Then the given expression is equal to $\frac{4x+x}{4x-x}=\frac{5x}{3x}=\boxed{\textbf{(C) }\frac{5}{3}}$.

Video Solution (CREATIVE THINKING)

https://youtu.be/1ULw0x9XK4o

~Education, the Study of Everything

Solution 3

We observe that all the answer choices other than $\textbf{(C)}$ are integer. Claim: $\frac{2^{2014}+2^{2012}}{2^{2014}-2^{2012}}$ is not an integer. Proof: We know that if $b>a$ and $\operatorname{gcd}(a,b) = a$, then $a|b$. So all we need to prove is that $\operatorname{gcd}(2^{2014}+2^{2012}, 2^{2014}-2^{2012}) \neq 2^{2014}+2^{2012} \text{ or } 2^{2014}-2^{2012}$. Since the numerator is larger than the denominator, the only possible case is $\gcd(2^{2014}+2^{2012}, 2^{2014}-2^{2012}) = 2^{2014}-2^{2012}$. We have to prove that this is impossible. Using the Euclidean Algorithm we can simplify to obtain \begin{align*} \gcd(2^{2014}+2^{2012}, 2^{2014}-2^{2012}) &= \gcd(2^{2014}+2^{2012}-2^{2014}+2^{2012}, 2^{2014}-2^{2012})\\ &= \gcd(2 \cdot 2^{2012}, 2^{2014}-2^{2012})\\ &= \gcd(2^{2013}, 2^{2014}-2^{2012}) \end{align*} We notice that $2^{2014}-2^{2012}$ can be factored since $2^{2012}$ is a common factor. Factoring gives us $2^{2014}-2^{2012} = 2^{2012}(2^2-1) = 3 \cdot 2^{2012}$. From this we know that $3$ is a factor of the original expression. Hence $\gcd(2^{2013}, 2^{2014}-2^{2012}) = \gcd(2^{2013}, 3 \cdot 2^{2012}) = 2^{2013} \neq 2^{2012} \cdot 3$. So $2^{2014}-2^{2012} \nmid 2^{2014}+2^{2012}$. So the fraction cannot be simplified into an integer. Hence the answer is the only fraction, $\boxed{\textbf{(C)}}$.

~JerryZYang

Video Solution

https://www.youtube.com/watch?v=2vf843cvVzo?t=545

~sugar_rush

https://youtu.be/C3prgokOdHc

~savannahsolver

See Also

2013 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2013 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png