Difference between revisions of "1992 AIME Problems/Problem 9"
Kevinr9828 (talk | contribs) |
(LaTeXed existing solution and added another.) |
||
| Line 2: | Line 2: | ||
Trapezoid <math>ABCD^{}_{}</math> has sides <math>AB=92^{}_{}</math>, <math>BC=50^{}_{}</math>, <math>CD=19^{}_{}</math>, and <math>AD=70^{}_{}</math>, with <math>AB^{}_{}</math> parallel to <math>CD^{}_{}</math>. A circle with center <math>P^{}_{}</math> on <math>AB^{}_{}</math> is drawn tangent to <math>BC^{}_{}</math> and <math>AD^{}_{}</math>. Given that <math>AP^{}_{}=\frac mn</math>, where <math>m^{}_{}</math> and <math>n^{}_{}</math> are relatively prime positive integers, find <math>m+n^{}_{}</math>. | Trapezoid <math>ABCD^{}_{}</math> has sides <math>AB=92^{}_{}</math>, <math>BC=50^{}_{}</math>, <math>CD=19^{}_{}</math>, and <math>AD=70^{}_{}</math>, with <math>AB^{}_{}</math> parallel to <math>CD^{}_{}</math>. A circle with center <math>P^{}_{}</math> on <math>AB^{}_{}</math> is drawn tangent to <math>BC^{}_{}</math> and <math>AD^{}_{}</math>. Given that <math>AP^{}_{}=\frac mn</math>, where <math>m^{}_{}</math> and <math>n^{}_{}</math> are relatively prime positive integers, find <math>m+n^{}_{}</math>. | ||
| − | == Solution == | + | == Solution 1== |
| − | + | Let <math>AB</math> be the base of the trapezoid and consider angles <math>A</math> and <math>B</math>. Let <math>x=AP</math> and let <math>h</math> equal the height of the trapezoid. Let <math>r</math> equal the radius of the circle. | |
| − | + | Then | |
| − | |||
| − | + | <math>(1) \sin{A}= \frac{r}{x} = \frac{h}{70}</math> and <math>\sin{B}= \frac{r}{92-x} = \frac{h}{50}</math> | |
| − | |||
| − | + | Let <math>z</math> be the distance along <math>AB</math> from <math>A</math> to where the perp from <math>D</math> meets <math>AB</math>. | |
| − | + | Then <math>h^2 +z^2 =70^2</math> and <math>(73-z)^2 + h^2 =50^2</math> so <math>h =\frac{\sqrt{44710959}}{146}</math> | |
| + | now substitute this into <math>(1)</math> to get <math>x= \frac{11753}{219} = \frac{161}{3}</math> and <math>m+n = 164</math>. | ||
| − | + | == Solution 2 == | |
| + | From <math>(1)</math> above, <math>x = \frac{70r}{h}</math> and <math>92-x = \frac{50r}{h}</math>. Adding these equations yields <math>92 = \frac{120r}{h}</math>. Thus, <math>x = \frac{70r}{h} = \frac{7}{12}\cdot\frac{120r}{h} = \frac{7}{12}\cdot92 = \frac{161}{3}</math>, and <math>m+n = \boxed{164}</math>. | ||
| − | + | == See also == | |
| − | + | {{AIME box|year=1992|num-b=8|num-a=10}} | |
| + | |||
| + | [[Category:Intermediate Geometry Problems]] | ||
Revision as of 13:50, 23 June 2008
Contents
Problem
Trapezoid
has sides
,
,
, and
, with
parallel to
. A circle with center
on
is drawn tangent to
and
. Given that
, where
and
are relatively prime positive integers, find
.
Solution 1
Let
be the base of the trapezoid and consider angles
and
. Let
and let
equal the height of the trapezoid. Let
equal the radius of the circle.
Then
and
Let
be the distance along
from
to where the perp from
meets
.
Then
and
so
now substitute this into
to get
and
.
Solution 2
From
above,
and
. Adding these equations yields
. Thus,
, and
.
See also
| 1992 AIME (Problems • Answer Key • Resources) | ||
| Preceded by Problem 8 |
Followed by Problem 10 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||