Difference between revisions of "2009 AIME II Problems/Problem 2"
Aimesolver (talk | contribs) (→Solution) |
m (→Solution) |
||
| Line 55: | Line 55: | ||
'''Solution 2''' | '''Solution 2''' | ||
| − | We know from the first three equations that <math>log_a27</math> = <math>log_37</math>, <math>log_b49</math> = <math>log_711</math>, and <math>log_c\sqrt{11}</math> = <math>log_{11}25</math>. Substituting, we get | + | We know from the first three equations that <math>\log_a27</math> = <math>\log_37</math>, <math>\log_b49</math> = <math>\log_711</math>, and <math>\log_c\sqrt{11}</math> = <math>\log_{11}25</math>. Substituting, we get |
| − | <math>a^{(log_a27)(log_37)}</math> + <math>b^{(log_b49)(log_711)</math> + <math>c^{(log_c\sqrt {11})(log_{11}25)}</math> | + | <math>a^{(\log_a27)(\log_37)}</math> + <math>b^{(\log_b49)(\log_711)</math> + <math>c^{(\log_c\sqrt {11})(\log_{11}25)}</math> |
| − | We know that <math>x^{log_xy}</math> = <math>y</math>, so we get | + | We know that <math>x^{\log_xy}</math> = <math>y</math>, so we get |
| − | <math>27^{log_37}</math> + <math>49^{log_711}</math> + <math>\sqrt {11}^{log_{11}25}</math> | + | <math>27^{\log_37}</math> + <math>49^{\log_711}</math> + <math>\sqrt {11}^{\log_{11}25}</math> |
| − | <math>(3^{log_37})^3</math> + <math>(7^{log_711})^2</math> + <math>({11^{log_{11}25})^{1/2}</math> | + | <math>(3^{\log_37})^3</math> + <math>(7^{\log_711})^2</math> + <math>({11^{\log_{11}25})^{1/2}</math> |
| − | The <math>3</math> and the <math>log_37</math> cancel out to make <math>7</math>, and we can do this for the other two terms. We obtain | + | The <math>3</math> and the <math>\log_37</math> cancel out to make <math>7</math>, and we can do this for the other two terms. We obtain |
<math>7^3</math> + <math>11^2</math> + <math>25^{1/2}</math> | <math>7^3</math> + <math>11^2</math> + <math>25^{1/2}</math> | ||
Revision as of 22:19, 9 June 2010
Problem
Suppose that
,
, and
are positive real numbers such that
,
, and
. Find
Solution
Solution 1
First, we have:
Now, let
, then we have:
This is all we need to evaluate the given formula. Note that in our case we have
,
, and
. We can now compute:
Similarly, we get
and
and therefore the answer is
.
Solution 2
We know from the first three equations that
=
,
=
, and
=
. Substituting, we get
+ $b^{(\log_b49)(\log_711)$ (Error compiling LaTeX. Unknown error_msg) +
We know that
=
, so we get
+
+
+
+ $({11^{\log_{11}25})^{1/2}$ (Error compiling LaTeX. Unknown error_msg)
The
and the
cancel out to make
, and we can do this for the other two terms. We obtain
+
+
=
+
+
=
.
See Also
| 2009 AIME II (Problems • Answer Key • Resources) | ||
| Preceded by Problem 1 |
Followed by Problem 3 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||