Difference between revisions of "2010 IMO Problems/Problem 3"
m (→Solution) |
m (→Solution) |
||
| Line 23: | Line 23: | ||
Lemma 2) <math>|g(m)-g(m+1)| = 1</math> (we have show that it can't be 0) | Lemma 2) <math>|g(m)-g(m+1)| = 1</math> (we have show that it can't be 0) | ||
| − | Assume for contradiction, that <math>|g(m)-g(m+1)| > 1</math>. Then there must exist a prime number <math>p</math> such that <math>g(m)</math> and <math>g(m+1)</math> are in the same residue class modulo <math>p</math>. | + | Assume for contradiction, that <math>|g(m)-g(m+1)| > 1</math>. |
| + | |||
| + | Then there must exist a prime number <math>p</math> such that <math>g(m)</math> and <math>g(m+1)</math> are in the same residue class modulo <math>p</math>. | ||
If <math>|g(m)-g(m+1)| = p^aq</math> where <math>q</math> is not divisible by <math>p</math>. | If <math>|g(m)-g(m+1)| = p^aq</math> where <math>q</math> is not divisible by <math>p</math>. | ||
Revision as of 22:40, 23 October 2010
Problem
Find all functions
such that
is a perfect square for all
Author: Gabriel Carroll, USA
Solution
Suppose such function
exist then:
Lemma 1)
Assume for contradiction that![]()
has to be a perfect square
but
.
A square cannot be between 2 consecutive squares. Contradiction. Thus,![]()
Lemma 2)
(we have show that it can't be 0)
Assume for contradiction, that.
Then there must exist a prime number
such that
and
are in the same residue class modulo
.
If
where
is not divisible by
.
If.
Consider ansuch that
![]()
, where
is not divisible by
![]()
If.
Consider ansuch that
![]()
, where
is not divisible by
![]()
At least one of,
is not divisible by
. Hence,
At least one of,
is divisible by an odd amount of
.
Hence, that number is not a perfect square.
Thus,,
![]()