Difference between revisions of "2004 AMC 12A Problems/Problem 17"
(→See also) |
m |
||
| Line 13: | Line 13: | ||
== Solution == | == Solution == | ||
<math>f(2^{100}) = f(2 \times 2^{99}) = 2^{99} \times f(2^{99})</math> <math>= 2^{99} \cdot 2^{98} \times f(2^{98}) = \ldots</math> <math>= 2^{99}2^{98}\cdots 2^{1} \cdot 1 \cdot f(1)</math> <math>= 2^{99 + 98 + \ldots + 2 + 1}</math> <math>= 2^{\frac{99(100)}{2}} = 2^{4950}</math> <math>\Rightarrow \mathrm{(D)}</math>. | <math>f(2^{100}) = f(2 \times 2^{99}) = 2^{99} \times f(2^{99})</math> <math>= 2^{99} \cdot 2^{98} \times f(2^{98}) = \ldots</math> <math>= 2^{99}2^{98}\cdots 2^{1} \cdot 1 \cdot f(1)</math> <math>= 2^{99 + 98 + \ldots + 2 + 1}</math> <math>= 2^{\frac{99(100)}{2}} = 2^{4950}</math> <math>\Rightarrow \mathrm{(D)}</math>. | ||
| + | |||
| + | ==Video Solution== | ||
| + | https://youtu.be/40mJNmstTEY | ||
== See also == | == See also == | ||
Revision as of 16:26, 3 January 2020
- The following problem is from both the 2004 AMC 12A #17 and 2004 AMC 10A #24, so both problems redirect to this page.
Contents
Problem
Let
be a function with the following properties:
, and
, for any positive integer
.
What is the value of
?
Solution
.
Video Solution
See also
| 2004 AMC 12A (Problems • Answer Key • Resources) | |
| Preceded by Problem 16 |
Followed by Problem 18 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
| 2004 AMC 10A (Problems • Answer Key • Resources) | ||
| Preceded by Problem 23 |
Followed by Problem 25 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.