Difference between revisions of "1980 AHSME Problems/Problem 5"

(Solution)
Line 19: Line 19:
 
== Solution ==
 
== Solution ==
  
We find that <math> m\angle PCQ=30^\circ </math>. Because it is a <math> 30^\circ-60^\circ-90^\circ </math> right triangle, we can let <math> PQ=x </math>, so <math> CQ=AQ=x\sqrt{3} </math>. Thus, <math> \frac{PQ}{AQ}=\frac{x}{x\sqrt{3}}=\frac{\sqrt{3}}{3}\Rightarrow\boxed{(B)} </math>.
+
Notice that <math>\angle PCQ=30^\circ</math>, and therefore <math>\triangle PCQ</math> is a <math> 30^\circ-60^\circ-90^\circ </math> right triangle. Let <math>x = PQ</math>. Then <math> CQ=AQ=x\sqrt{3}</math> and <math> \frac{PQ}{AQ}=\frac{x}{x\sqrt{3}}=\boxed{(\textbf{B})\ \frac{\sqrt{3}}{3}} </math>.
 
 
  
 
== See also ==
 
== See also ==
 
{{AHSME box|year=1980|num-b=4|num-a=6}}
 
{{AHSME box|year=1980|num-b=4|num-a=6}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 01:29, 14 July 2025

Problem

If $AB$ and $CD$ are perpendicular diameters of circle $Q$, $P$ in $\overline{AQ}$, and $\measuredangle QPC = 60^\circ$, then the length of $PQ$ divided by the length of $AQ$ is

[asy] defaultpen(linewidth(0.7)+fontsize(10)); pair A=(-1,0), B=(1,0), C=(0,1), D=(0,-1), Q=origin, P=(-0.5,0); draw(P--C--D^^A--B^^Circle(Q,1)); label("$A$", A, W); label("$B$", B, E); label("$C$", C, N); label("$D$", D, S); label("$P$", P, S); label("$Q$", Q, SE); label("$60^\circ$", P+0.0.5*dir(30), dir(30));[/asy]

$\text{(A)} \ \frac{\sqrt{3}}{2} \qquad \text{(B)} \ \frac{\sqrt{3}}{3} \qquad \text{(C)} \ \frac{\sqrt{2}}{2} \qquad \text{(D)} \ \frac12 \qquad \text{(E)} \ \frac23$

Solution

Notice that $\angle PCQ=30^\circ$, and therefore $\triangle PCQ$ is a $30^\circ-60^\circ-90^\circ$ right triangle. Let $x = PQ$. Then $CQ=AQ=x\sqrt{3}$ and $\frac{PQ}{AQ}=\frac{x}{x\sqrt{3}}=\boxed{(\textbf{B})\ \frac{\sqrt{3}}{3}}$.

See also

1980 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png