Difference between revisions of "2004 AMC 10B Problems/Problem 6"
(→Solution) |
(→Solution) |
||
| Line 8: | Line 8: | ||
Using the fact that <math>n! = n\cdot (n-1)!</math>, we can write: | Using the fact that <math>n! = n\cdot (n-1)!</math>, we can write: | ||
| + | |||
* <math>A=98! \cdot (99\cdot 98!) = 99 \cdot (98!)^2 = 11\cdot(3\cdot98!)^2</math> | * <math>A=98! \cdot (99\cdot 98!) = 99 \cdot (98!)^2 = 11\cdot(3\cdot98!)^2</math> | ||
| + | |||
* <math>B=100 \cdot 99 \cdot (98!)^2 = 11\cdot (30\cdot 98!)^2 </math> | * <math>B=100 \cdot 99 \cdot (98!)^2 = 11\cdot (30\cdot 98!)^2 </math> | ||
| + | |||
* <math>C=100\cdot (99!)^2 = (10\cdot 99!)^2</math> | * <math>C=100\cdot (99!)^2 = (10\cdot 99!)^2</math> | ||
| + | |||
* <math>D=101\cdot 100\cdot (99!)^2 = 101 \cdot(10\cdot 99!)^2</math> | * <math>D=101\cdot 100\cdot (99!)^2 = 101 \cdot(10\cdot 99!)^2</math> | ||
| + | |||
* <math>E=101\cdot (100!)^2</math> | * <math>E=101\cdot (100!)^2</math> | ||
Revision as of 12:46, 20 January 2014
Problem
Which of the following numbers is a perfect square?
Solution
Using the fact that
, we can write:
Clearly
is a square, and as
, and
are primes, none of the other four are squares.
See also
| 2004 AMC 10B (Problems • Answer Key • Resources) | ||
| Preceded by Problem 5 |
Followed by Problem 7 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.