Difference between revisions of "2011 AMC 10B Problems/Problem 23"
(→Solution 1) |
(→Solution 2) |
||
Line 25: | Line 25: | ||
In modulo <math>8,</math> we have <math>2011^4 \equiv 1 \pmod{8}</math> by Euler's Theorem, and also <math>2011 \equiv 3 \pmod{8},</math> so we have <cmath>2011^{2011} = (2011^4)^{502} \cdot 2011^3 \equiv 1^{502} \cdot 3^3 \equiv 3 \pmod{8}.</cmath> | In modulo <math>8,</math> we have <math>2011^4 \equiv 1 \pmod{8}</math> by Euler's Theorem, and also <math>2011 \equiv 3 \pmod{8},</math> so we have <cmath>2011^{2011} = (2011^4)^{502} \cdot 2011^3 \equiv 1^{502} \cdot 3^3 \equiv 3 \pmod{8}.</cmath> | ||
− | In modulo <math>125,</math> we have <math>2011^{100} \equiv 1 \pmod{125}</math> by Euler's Theorem, and also <math>2011 \equiv 11 \pmod{125}.</math> Therefore, we have < | + | In modulo <math>125,</math> we have <math>2011^{100} \equiv 1 \pmod{125}</math> by Euler's Theorem, and also <math>2011 \equiv 11 \pmod{125}.</math> Therefore, we have <math>\begin{aligned} 2011^{2011} &= (2011^{100})^{20} \cdot 2011^{11} \\ &\equiv 1^{20} \cdot 11^{11} \\ &= 121^5 \cdot 11 \\ &= (-4)^5 \cdot 11 = -1024 \cdot 11 \\ &\equiv -24 \cdot 11 = -264 \\ &\equiv 111 \pmod{125}. \end{aligned} </math> |
After finding the solution <math>2011^{2011} \equiv 611 \pmod{1000},</math> we conclude it is the only one by the Chinese Remainder Theorem. Thus, the hundreds digit is <math>\boxed{\textbf{(D) } 6}.</math> | After finding the solution <math>2011^{2011} \equiv 611 \pmod{1000},</math> we conclude it is the only one by the Chinese Remainder Theorem. Thus, the hundreds digit is <math>\boxed{\textbf{(D) } 6}.</math> |
Revision as of 15:27, 29 March 2015
Contents
Problem
What is the hundreds digit of
Solution 1
Since we know that
To compute this, we use a clever application of the binomial theorem.
In all of the other terms, the power of is greater than
and so is equivalent to
modulo
which means we can ignore it. We have:
Therefore, the hundreds digit is
Solution 2
We need to compute By the Chinese Remainder Theorem, it suffices to compute
and
In modulo we have
by Euler's Theorem, and also
so we have
In modulo we have
by Euler's Theorem, and also
Therefore, we have
After finding the solution we conclude it is the only one by the Chinese Remainder Theorem. Thus, the hundreds digit is
See Also
2011 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 22 |
Followed by Problem 24 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.