Difference between revisions of "2011 USAMO Problems/Problem 3"
(→Solution 1) |
(→Solution 1) |
||
Line 8: | Line 8: | ||
Next we will find the angles between <math>\vec{u}</math>, <math>\vec{v}</math>, and <math>\vec{w}</math>. As <math>\angle MNX = \gamma</math>, the angle between the vectors <math>\vec{u}</math> and <math>\vec{NE}</math> is <math>\gamma</math>. Similarly, the angle between <math>\vec{NE}</math> and <math>\vec{EF}</math> is <math>180^\circ-\beta</math>, and the angle between <math>\vec{EF}</math> and <math>\vec{v}</math> is <math>\alpha</math>. Thus, the angle between <math>\vec{u}</math> and <math>\vec{v}</math> is <math>\gamma + 180^\circ-\beta+\alpha = 360^\circ - 2\beta</math>, or just <math>2\beta</math> in the other direction if we take it modulo <math>360^\circ</math>. Similarly, the angle between <math>\vec{v}</math> and <math>\vec{w}</math> is <math>2 \gamma</math>, and the angle between <math>\vec{w}</math> and <math>\vec{u}</math> is <math>2 \alpha</math>. | Next we will find the angles between <math>\vec{u}</math>, <math>\vec{v}</math>, and <math>\vec{w}</math>. As <math>\angle MNX = \gamma</math>, the angle between the vectors <math>\vec{u}</math> and <math>\vec{NE}</math> is <math>\gamma</math>. Similarly, the angle between <math>\vec{NE}</math> and <math>\vec{EF}</math> is <math>180^\circ-\beta</math>, and the angle between <math>\vec{EF}</math> and <math>\vec{v}</math> is <math>\alpha</math>. Thus, the angle between <math>\vec{u}</math> and <math>\vec{v}</math> is <math>\gamma + 180^\circ-\beta+\alpha = 360^\circ - 2\beta</math>, or just <math>2\beta</math> in the other direction if we take it modulo <math>360^\circ</math>. Similarly, the angle between <math>\vec{v}</math> and <math>\vec{w}</math> is <math>2 \gamma</math>, and the angle between <math>\vec{w}</math> and <math>\vec{u}</math> is <math>2 \alpha</math>. | ||
− | And since <math>\vec{u}+\vec{v}+\vec{w}=\vec{0}</math>, we can arrange the three vectors to form a triangle, so the triangle with sides of lengths <math>2p \cos \gamma</math>, <math>2q \cos \alpha</math>, and <math>2r \cos \epsilon</math> has opposite angles of <math>180^\circ - 2\gamma</math>, <math>180^\circ - 2\alpha</math>, and <math>180^\circ - 2\epsilon</math>, respectively. So by the law of sines (double sine formula): <cmath> \frac{2p \cos \gamma}{\sin 2\gamma} = \frac{2q \cos \alpha}{\sin 2\alpha} = \frac{2r \cos \epsilon}{\sin 2\epsilon} </cmath> <cmath> \frac{p}{\sin \gamma} = \frac{q}{\sin \alpha} = \frac{r}{\sin \epsilon}, </cmath> and the triangle with sides of length <math>p</math>, <math>q</math>, and <math>r</math> has corrosponding angles of <math>\gamma</math>, <math>\alpha</math>, and <math>\ | + | And since <math>\vec{u}+\vec{v}+\vec{w}=\vec{0}</math>, we can arrange the three vectors to form a triangle, so the triangle with sides of lengths <math>2p \cos \gamma</math>, <math>2q \cos \alpha</math>, and <math>2r \cos \epsilon</math> has opposite angles of <math>180^\circ - 2\gamma</math>, <math>180^\circ - 2\alpha</math>, and <math>180^\circ - 2\epsilon</math>, respectively. So by the law of sines (double sine formula): <cmath> \frac{2p \cos \gamma}{\sin 2\gamma} = \frac{2q \cos \alpha}{\sin 2\alpha} = \frac{2r \cos \epsilon}{\sin 2\epsilon} </cmath> <cmath> \frac{p}{\sin \gamma} = \frac{q}{\sin \alpha} = \frac{r}{\sin \epsilon}, </cmath> and the triangle with sides of length <math>p</math>, <math>q</math>, and <math>r</math> has corrosponding angles of <math>\gamma</math>, <math>\alpha</math>, and <math>\epsilon</math> (but then triangles <math>FAB</math>, <math>CDB</math>, and <math>FDE</math>?). So <math>FD=p</math>, <math>BF=q</math>, and <math>BD=r</math>, and <math>D</math>, <math>F</math>, and <math>B</math> are the reflections of the vertices of triangle <math>ACE</math> about the sides. So <math>AD</math>, <math>BE</math>, and <math>CF</math> concur at the orthocenter of triangle <math>ACE</math>, with <math>ACE</math> being the smaller triangle: |
<asy> | <asy> | ||
pair A,B,C,D,E,F; | pair A,B,C,D,E,F; |
Revision as of 22:36, 15 April 2016
In hexagon , which is nonconvex but not self-intersecting, no pair of opposite sides are parallel. The internal angles satisfy
,
, and
. Furthermore
,
, and
. Prove that diagonals
,
, and
are concurrent.
Solutions
Solution 1
Let ,
, and
,
,
,
,
intersect
at
,
intersect
at
, and
intersect
at
. Define the vectors:
Clearly,
.
Note that . By sliding the vectors
and
to the vectors
and
respectively, then
. As
is isosceles with
, the base angles are both
. Thus,
. Similarly,
and
.
Next we will find the angles between ,
, and
. As
, the angle between the vectors
and
is
. Similarly, the angle between
and
is
, and the angle between
and
is
. Thus, the angle between
and
is
, or just
in the other direction if we take it modulo
. Similarly, the angle between
and
is
, and the angle between
and
is
.
And since , we can arrange the three vectors to form a triangle, so the triangle with sides of lengths
,
, and
has opposite angles of
,
, and
, respectively. So by the law of sines (double sine formula):
and the triangle with sides of length
,
, and
has corrosponding angles of
,
, and
(but then triangles
,
, and
?). So
,
, and
, and
,
, and
are the reflections of the vertices of triangle
about the sides. So
,
, and
concur at the orthocenter of triangle
, with
being the smaller triangle:
Solution 2
We work in the complex plane, where lowercase letters denote point affixes. Let denote hexagon
. Since
, the condition
is equivalent to
.
Construct a "phantom hexagon" as follows: let
be a triangle with
,
, and
(this is possible since
by the angle conditions), and reflect
over its sides to get points
, respectively. By rotation and reflection if necessary, we assume
and
have the same orientation (clockwise or counterclockwise), i.e.
. It's easy to verify that
for
and opposite sides of
have equal lengths. As the corresponding sides of
and
must then be parallel, there exist positive reals
such that
,
, and
. But then
, etc., so the non-parallel condition "transfers" directly from
to
and
If
, then
must be similar to
and the conclusion is obvious.
Otherwise, since and
, we must have
and
. Now let
,
,
be the feet of the altitudes in
; by the non-parallel condition in
,
are pairwise distinct. But
, whence
are three distinct collinear points, which is clearly impossible. (The points can only be collinear when
is a right triangle, but in this case two of
must coincide.)
Alternatively (for the previous paragraph), WLOG assume that is the unit circle, and use the fact that
, etc. to get simple expressions for
and
.
Solution 3
We work in the complex plane to give (essentially) a complete characterization when the parallel condition is relaxed.
WLOG assume are on the unit circle. It suffices to show that
uniquely determine
, since we know that if we let
be the reflection of
over
,
be the reflection of
over
, and
be the reflection of
over
, then
satisfies the problem conditions. (*)
It's easy to see with the given conditions that
Note that
so plugging into the third equation we have
Simplifying, this becomes
Of course, we can also "conjugate" this equation -- a nice way to do this is to note that if
then
whence
If
, then eliminating
, we get
The first case corresponds to (*) (since
uniquely determine
and
), the second corresponds to
(or equivalently, since
,
), and by symmetry, the third corresponds to
.
Otherwise, if , then we easily find
from the first of the two equations in
(we actually don't need this, but it tells us that the locus of working
is a line through the origin). It's easy to compute
and
, so
, and we're done.
Comment. It appears that taking the unit circle is nicer than, say
or
the unit circle (which may not even be reasonably tractable).
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.
See Also
2011 USAMO (Problems • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |