Difference between revisions of "2002 AMC 10B Problems/Problem 14"
m (→Problem) |
m (→Problem) |
||
| Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
| − | The number <math> | + | The number <math>5^{64}\cdot 8^{25}</math> is the square of a positive integer <math>N</math>. In decimal representation, the sum of the digits of <math>N</math> is |
<math> \mathrm{(A) \ } 7\qquad \mathrm{(B) \ } 14\qquad \mathrm{(C) \ } 21\qquad \mathrm{(D) \ } 28\qquad \mathrm{(E) \ } 35 </math> | <math> \mathrm{(A) \ } 7\qquad \mathrm{(B) \ } 14\qquad \mathrm{(C) \ } 21\qquad \mathrm{(D) \ } 28\qquad \mathrm{(E) \ } 35 </math> | ||
Revision as of 20:16, 1 September 2016
Problem
The number
is the square of a positive integer
. In decimal representation, the sum of the digits of
is
Solution
Since,
.
Combing the
's and
's gives us,
.
This is
with sixty-four,
's on the end. So, the sum of the digits of
is
See also
| 2002 AMC 10B (Problems • Answer Key • Resources) | ||
| Preceded by Problem 13 |
Followed by Problem 15 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.