Difference between revisions of "2017 AMC 8 Problems/Problem 18"
m (→Solution) |
Hashtagmath (talk | contribs) |
||
| Line 1: | Line 1: | ||
==Problem 18== | ==Problem 18== | ||
| − | In the non-convex quadrilateral <math>ABCD</math> shown below, <math>\angle BCD</math> is a right angle, <math>AB=12</math>, <math>BC=4</math>, <math>CD=3</math>, and <math>AD=13</math>. | + | In the non-convex quadrilateral <math>ABCD</math> shown below, <math>\angle BCD</math> is a right angle, <math>AB=12</math>, <math>BC=4</math>, <math>CD=3</math>, and <math>AD=13</math>. What is the area of quadrilateral <math>ABCD</math>? |
| − | <math>\textbf{(A) }12\qquad\textbf{(B) }24\qquad\textbf{(C) }26\qquad\textbf{(D) }30\qquad\textbf{(E) }36</math> | + | <asy>draw((0,0)--(2.4,3.6)--(0,5)--(12,0)--(0,0)); label("$B$", (0, 0), SW); label("$A$", (12, 0), ESE); label("$C$", (2.4, 3.6), SE); label("$D$", (0, 5), N);</asy> |
| + | |||
| + | <math>\textbf{(A) }12 \qquad \textbf{(B) }24 \qquad \textbf{(C) }26 \qquad \textbf{(D) }30 \qquad \textbf{(E) }36</math> | ||
==Solution== | ==Solution== | ||
Revision as of 14:33, 16 January 2021
Problem 18
In the non-convex quadrilateral
shown below,
is a right angle,
,
,
, and
. What is the area of quadrilateral
?
Solution
We first connect point
with point
.
We can see that
is a 3-4-5 right triangle. We can also see that
is a right triangle, by the 5-12-13 Pythagorean triple. With these lengths, we can solve the problem. The area of
is
, and the area of the smaller 3-4-5 triangle is
. Thus, the area of quadrialteral
is
See Also
| 2017 AMC 8 (Problems • Answer Key • Resources) | ||
| Preceded by Problem 17 |
Followed by Problem 19 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AJHSME/AMC 8 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.