Difference between revisions of "2018 AMC 12B Problems/Problem 12"
Rockmanex3 (talk | contribs) (→See Also) |
MRENTHUSIASM (talk | contribs) (Changed the variable definition so it is more manageable. Also, used the ordered list command for the three inequalities.) |
||
Line 3: | Line 3: | ||
Side <math>\overline{AB}</math> of <math>\triangle ABC</math> has length <math>10</math>. The bisector of angle <math>A</math> meets <math>\overline{BC}</math> at <math>D</math>, and <math>CD = 3</math>. The set of all possible values of <math>AC</math> is an open interval <math>(m,n)</math>. What is <math>m+n</math>? | Side <math>\overline{AB}</math> of <math>\triangle ABC</math> has length <math>10</math>. The bisector of angle <math>A</math> meets <math>\overline{BC}</math> at <math>D</math>, and <math>CD = 3</math>. The set of all possible values of <math>AC</math> is an open interval <math>(m,n)</math>. What is <math>m+n</math>? | ||
− | < | + | <math>\textbf{(A) }16 \qquad |
\textbf{(B) }17 \qquad | \textbf{(B) }17 \qquad | ||
\textbf{(C) }18 \qquad | \textbf{(C) }18 \qquad | ||
\textbf{(D) }19 \qquad | \textbf{(D) }19 \qquad | ||
− | \textbf{(E) }20 \qquad</ | + | \textbf{(E) }20 \qquad</math> |
== Solution == | == Solution == | ||
+ | Let <math>AC=x.</math> By Angle Bisector Theorem, we have <math>\frac{AB}{AC}=\frac{BD}{CD},</math> from which <math>BD=CD\cdot\frac{AB}{AC}=\frac{30}{x}.</math> | ||
− | + | Recall that <math>x>0.</math> We apply the Triangle Inequality to <math>\triangle ABC:</math> | |
+ | <ol style="margin-left: 1.5em;"> | ||
+ | <li><math>AC+BC>AB</math> <p> | ||
+ | We get | ||
+ | <cmath>\begin{align*} | ||
+ | x+\left(\frac{30}{x}+3\right)&>10 \\ | ||
+ | x-7+\frac{30}{x}&>0 \\ | ||
+ | x^2-7x+30&>0 \\ | ||
+ | \left(x-\frac72\right)^2+\frac{71}{4}&>0 \\ | ||
+ | x&>0. | ||
+ | \end{align*}</cmath> | ||
+ | </li><p> | ||
+ | <li><math>AB+BC>AC</math> <p> | ||
+ | We get | ||
+ | <cmath>\begin{align*} | ||
+ | 10+\left(\frac{30}{x}+3\right)&>x \\ | ||
+ | x-13-\frac{30}{x}&<0 \\ | ||
+ | x^2-13x-30&<0 \\ | ||
+ | (x+2)(x-15)&<0 \\ | ||
+ | 0<x&<15. | ||
+ | \end{align*}</cmath> | ||
+ | </li><p> | ||
+ | <li><math>AB+AC>BC</math> <p> | ||
+ | We get | ||
+ | <cmath>\begin{align*} | ||
+ | 10+x&>\frac{30}{x}+3 \\ | ||
+ | x+7-\frac{30}{x}&>0 \\ | ||
+ | x^2+7x-30&>0 \\ | ||
+ | (x+10)(x-3)&>0 \\ | ||
+ | x&>3. | ||
+ | \end{align*}</cmath> | ||
+ | </li><p> | ||
+ | </ol> | ||
+ | Taking the intersection of the solutions gives <cmath>(m,n)=(0,\infty)\cap(0,15)\cap(3,\infty)=(3,15),</cmath> so the answer is <math>m+n=\boxed{\textbf{(C) }18}.</math> | ||
− | + | ~MRENTHUSIASM | |
− | |||
− | |||
− | |||
− | |||
==See Also== | ==See Also== |
Revision as of 05:09, 21 September 2021
Problem
Side of
has length
. The bisector of angle
meets
at
, and
. The set of all possible values of
is an open interval
. What is
?
Solution
Let By Angle Bisector Theorem, we have
from which
Recall that We apply the Triangle Inequality to
We get
We get
We get
Taking the intersection of the solutions gives so the answer is
~MRENTHUSIASM
See Also
2018 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 11 |
Followed by Problem 13 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.