Difference between revisions of "2019 USAJMO Problems/Problem 3"
Sriraamster (talk | contribs) (→Solution) |
Sriraamster (talk | contribs) (→Solution) |
||
Line 7: | Line 7: | ||
Note that only one point <math>P</math> satisfies the given angle condition. With this in mind, construct <math>P'</math> with the following properties: | Note that only one point <math>P</math> satisfies the given angle condition. With this in mind, construct <math>P'</math> with the following properties: | ||
− | < | + | 1) <math>AP' \cdot AB = AD^2</math> |
− | < | + | 2) <math>BP' \cdot AB = CD^2</math> |
− | Claim:< | + | Claim:<math>P = P'</math> |
Proof: | Proof: | ||
− | The conditions imply the similarities < | + | The conditions imply the similarities <math>ADP \sim ABD</math> and <math>BCP \sim BAC</math> whence <math>\measuredangle APD = \measuredangle BDA = \measuredangle BCA = \measuredangle CPB</math> as desired. <math>\square</math> |
− | Claim: < | + | Claim: <math>PE</math> is a symmedian in <math>AEB</math> |
Proof: | Proof: | ||
Line 29: | Line 29: | ||
<cmath>\iff \left(\frac{BC}{AD} \right)^2 = \left(\frac{BE}{AE} \right)^2 = \frac{BP}{AP} </cmath> | <cmath>\iff \left(\frac{BC}{AD} \right)^2 = \left(\frac{BE}{AE} \right)^2 = \frac{BP}{AP} </cmath> | ||
− | as desired. < | + | as desired. <math>\square</math> |
− | Since < | + | Since <math>P</math> is the isogonal conjugate of <math>N</math>, <math>\measuredangle PEA = \measuredangle MEC = \measuredangle BEN</math>. However <math>\measuredangle MEC = \measuredangle BEN</math> implies that <math>M</math> is the midpoint of <math>CD</math> from similar triangles, so we are done. <math>\square</math> |
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 12:35, 25 June 2019
Problem
Let
be a cyclic quadrilateral satisfying
. The diagonals of
intersect at
. Let
be a point on side
satisfying
. Show that line
bisects
.
Solution
Let . Also, let
be the midpoint of
.
Note that only one point satisfies the given angle condition. With this in mind, construct
with the following properties:
1)
2)
Claim:
Proof:
The conditions imply the similarities and
whence
as desired.
Claim: is a symmedian in
Proof:
We have
as desired.
Since is the isogonal conjugate of
,
. However
implies that
is the midpoint of
from similar triangles, so we are done.
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.
See also
2019 USAJMO (Problems • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAJMO Problems and Solutions |