Difference between revisions of "1989 AIME Problems/Problem 1"
Mathlete2017 (talk | contribs) (→Solution 5) |
Qwertysri987 (talk | contribs) (→Solution 6) |
||
Line 25: | Line 25: | ||
===Solution 6=== | ===Solution 6=== | ||
Multiplying <math>(31)(30)(29)(28)</math> gives us <math>755160</math>. Adding <math>1</math> to this gives <math>755161</math>. Now we must choose a number squared that is equal to <math>755161</math>. Taking the square root of this gives <math>\boxed{869}</math> | Multiplying <math>(31)(30)(29)(28)</math> gives us <math>755160</math>. Adding <math>1</math> to this gives <math>755161</math>. Now we must choose a number squared that is equal to <math>755161</math>. Taking the square root of this gives <math>\boxed{869}</math> | ||
+ | |||
+ | ===Solution 7=== | ||
+ | Notice that <math>(a+1)^2 = a \cdot (a+2) +1</math>. Then we can notice that <math>30 \cdot 29 =870 </math> and that <math>31 \cdot 28 = 868</math>. Therefore, <math> \sqrt{(31)(30)(29)(28) +1} = \sqrt{(870)(868) +1} = \sqrt{(868 +1)^2} = \boxed{869}</math>. This is because we have that <math>a=868</math> as per the equation <math>(a+1)^2 = a \cdot (a+2) +1</math>. | ||
+ | |||
+ | ~qwertysri987 | ||
== See also == | == See also == |
Revision as of 12:55, 2 July 2019
Contents
Problem
Compute .
Solution
Solution 1
Notice and
. So now our expression is
. Setting 870 equal to
, we get
which then equals
. So since
,
, our answer is
.
Solution 2
Note that the four numbers to multiply are symmetric with the center at .
Multiply the symmetric pairs to get
and
.
.
Solution 3
The last digit under the radical is , so the square root must either end in
or
, since
means
. Additionally, the number must be near
, narrowing the reasonable choices to
and
.
Continuing the logic, the next-to-last digit under the radical is the same as the last digit of , which is
. Quick computation shows that
ends in
, while
ends in
. Thus, the answer is
.
Solution 4
Similar to Solution 1 above, call the consecutive integers to make use of symmetry. Note that
itself is not an integer - in this case,
. The expression becomes
. Distributing each pair of difference of squares first, and then distributing the two resulting quadratics and adding the constant, gives
. The inside is a perfect square trinomial, since
. It's equal to
, which simplifies to
. You can plug in the value of
from there, or further simplify to
, which is easier to compute. Either way, plugging in
gives
.
Solution 5
Note that .
So, our answer is just
Solution 6
Multiplying gives us
. Adding
to this gives
. Now we must choose a number squared that is equal to
. Taking the square root of this gives
Solution 7
Notice that . Then we can notice that
and that
. Therefore,
. This is because we have that
as per the equation
.
~qwertysri987
See also
1989 AIME (Problems • Answer Key • Resources) | ||
Preceded by First Question |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.