Difference between revisions of "1995 AIME Problems/Problem 13"
| Line 3: | Line 3: | ||
== Solution == | == Solution == | ||
| − | When <math>\left(k - \frac {1}{2}\right)^4 \leq n < \left(k + \frac {1}{2}\right)^4</math>, | + | When <math>\left(k - \frac {1}{2}\right)^4 \leq n < \left(k + \frac {1}{2}\right)^4</math>, <math>f(n) = k</math>. Thus there are <math>\left \lfloor \left(k + \frac {1}{2}\right)^4 - \left(k - \frac {1}{2}\right)^4 \right\rfloor</math> values of <math>n</math> for which <math>f(n) = k</math>. Expanding using the [[binomial theorem]], |
<cmath>\begin{align*} | <cmath>\begin{align*} | ||
Revision as of 11:18, 6 December 2019
Contents
Problem
Let
be the integer closest to
Find
Solution
When
,
. Thus there are
values of
for which
. Expanding using the binomial theorem,
Thus,
appears in the summation
times, and the sum for each
is then
. From
to
, we get
(either adding or using the sum of consecutive squares formula).
But this only accounts for
terms, so we still have
terms with
. This adds
to our summation, giving
.
Solution 2
This is a pretty easy problem just to bash. Since the max number we can get is
, we just need to test n values for
and
. Then just do how many numbers there are times
, which should be
See also
| 1995 AIME (Problems • Answer Key • Resources) | ||
| Preceded by Problem 12 |
Followed by Problem 14 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.