Difference between revisions of "2004 AMC 10B Problems/Problem 21"
m (→Solution 2) |
Scrabbler94 (talk | contribs) (→Solution: solution 2 isn't really correct as the positions of the terms which appear in both sequences change after shifting.) |
||
| Line 5: | Line 5: | ||
<math> \mathrm{(A) \ } 3722 \qquad \mathrm{(B) \ } 3732 \qquad \mathrm{(C) \ } 3914 \qquad \mathrm{(D) \ } 3924 \qquad \mathrm{(E) \ } 4007 </math> | <math> \mathrm{(A) \ } 3722 \qquad \mathrm{(B) \ } 3732 \qquad \mathrm{(C) \ } 3914 \qquad \mathrm{(D) \ } 3924 \qquad \mathrm{(E) \ } 4007 </math> | ||
==Solution== | ==Solution== | ||
| − | |||
The two sets of terms are <math>A=\{ 3k+1 : 0\leq k < 2004 \}</math> and <math>B=\{ 7l+9 : 0\leq l<2004\}</math>. | The two sets of terms are <math>A=\{ 3k+1 : 0\leq k < 2004 \}</math> and <math>B=\{ 7l+9 : 0\leq l<2004\}</math>. | ||
| Line 19: | Line 18: | ||
Therefore <math>|A\cap B|=286</math>, and thus <math>|S|=4008-|A\cap B|=\boxed{3722}</math>. | Therefore <math>|A\cap B|=286</math>, and thus <math>|S|=4008-|A\cap B|=\boxed{3722}</math>. | ||
| − | |||
| − | |||
== See also == | == See also == | ||
Revision as of 23:04, 23 January 2020
Problem
Let
;
;
and
;
;
be two arithmetic progressions. The set
is the union of the first
terms of each sequence. How many distinct numbers are in
?
Solution
The two sets of terms are
and
.
Now
. We can compute
. We will now find
.
Consider the numbers in
. We want to find out how many of them lie in
. In other words, we need to find out the number of valid values of
for which
.
The fact "
" can be rewritten as "
, and
".
The first condition gives
, the second one gives
.
Thus the good values of
are
, and their count is
.
Therefore
, and thus
.
See also
| 2004 AMC 10B (Problems • Answer Key • Resources) | ||
| Preceded by Problem 20 |
Followed by Problem 22 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.