Difference between revisions of "2004 AMC 10B Problems/Problem 21"
Scrabbler94 (talk | contribs) (→Solution: solution 2 isn't really correct as the positions of the terms which appear in both sequences change after shifting.) |
(→Solution) |
||
| Line 17: | Line 17: | ||
Thus the good values of <math>l</math> are <math>\{1,4,7,\dots,856\}</math>, and their count is <math>858/3 = 286</math>. | Thus the good values of <math>l</math> are <math>\{1,4,7,\dots,856\}</math>, and their count is <math>858/3 = 286</math>. | ||
| − | Therefore <math>|A\cap B|=286</math>, and thus <math>|S|=4008-|A\cap B|=\boxed{3722}</math>. | + | Therefore <math>|A\cap B|=286</math>, and thus <math>|S|=4008-|A\cap B|=\boxed{(A) 3722}</math>. |
== See also == | == See also == | ||
Revision as of 19:34, 26 January 2020
Problem
Let
;
;
and
;
;
be two arithmetic progressions. The set
is the union of the first
terms of each sequence. How many distinct numbers are in
?
Solution
The two sets of terms are
and
.
Now
. We can compute
. We will now find
.
Consider the numbers in
. We want to find out how many of them lie in
. In other words, we need to find out the number of valid values of
for which
.
The fact "
" can be rewritten as "
, and
".
The first condition gives
, the second one gives
.
Thus the good values of
are
, and their count is
.
Therefore
, and thus
.
See also
| 2004 AMC 10B (Problems • Answer Key • Resources) | ||
| Preceded by Problem 20 |
Followed by Problem 22 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.