Difference between revisions of "1998 JBMO Problems/Problem 2"
Durianaops (talk | contribs) (→Solution 2) |
Durianaops (talk | contribs) (→Solution 1) |
||
| Line 10: | Line 10: | ||
Let <math>BC = a, ED = 1 - a</math> | Let <math>BC = a, ED = 1 - a</math> | ||
| − | Let | + | Let <math>\angle DAC = X</math> |
| − | Applying cosine rule to | + | Applying cosine rule to <math>\triangle DAC</math> we get: |
| − | <math> | + | <math>\cos X = \frac{AC ^ {2} + AD ^ {2} - DC ^ {2}}{ 2 \cdot AC \cdot AD }</math> |
Substituting <math>AC^{2} = 1^{2} + a^{2}, AD ^ {2} = 1^{2} + (1-a)^{2}, DC = 1</math> we get: | Substituting <math>AC^{2} = 1^{2} + a^{2}, AD ^ {2} = 1^{2} + (1-a)^{2}, DC = 1</math> we get: | ||
| − | <math> | + | <math>\cos^{2} X = \frac{(1 - a - a ^ {2}) ^ {2}}{((1 + a^{2})(2 - 2a + a^{2}))}</math> |
| − | From above, <math> | + | From above, <math>\sin^{2} X = 1 - \cos^{2} X = \frac{1}{((1 + a^{2})(2 - 2a + a^{2}))} = \frac{1}{AC^{2} \cdot AD^{2}}</math> |
| − | Thus, <math> | + | Thus, <math>\sin X \cdot AC \cdot AD = 1</math> |
| − | So, <math> | + | So, area of <math>\triangle DAC</math> = <math>\frac{1}{2}\cdot \sin X \cdot AC \cdot AD = \frac{1}{2}</math> |
| − | Let <math>AF</math> be the altitude of triangle DAC from A. | + | Let <math>AF</math> be the altitude of <math>\triangle DAC</math> from <math>A</math>. |
| − | So <math>1 | + | So <math>\frac{1}{2}\cdot DC\cdot AF = \frac{1}{2}</math> |
This implies <math>AF = 1</math>. | This implies <math>AF = 1</math>. | ||
| − | Since <math>AFCB</math> is a cyclic quadrilateral with <math>AB = AF</math>, | + | Since <math>AFCB</math> is a cyclic quadrilateral with <math>AB = AF</math>, <math>\triangle ABC</math> is congruent to <math>\triangle AFC</math>. |
| − | Similarly <math>AEDF</math> is a cyclic quadrilateral and | + | Similarly <math>AEDF</math> is a cyclic quadrilateral and <math>\triangle AED</math> is congruent to <math>\triangle AFD</math>. |
| − | So | + | So area of <math>\triangle ABC</math> + area of <math>\triangle AED</math> = area of <math>\triangle ADC</math>. |
| − | Thus | + | Thus area of pentagon <math>ABCD</math> = area of <math>\triangle ABC</math> + area of <math>\triangle AED</math> + area of <math>\triangle DAC</math> = <math>\frac{1}{2}+\frac{1}{2} = 1</math> |
By <math>Kris17</math> | By <math>Kris17</math> | ||
| − | |||
=== Solution 2 === | === Solution 2 === | ||
Revision as of 22:23, 4 June 2020
Problem 2
Let
be a convex pentagon such that
,
and
. Compute the area of the pentagon.
Solutions
Solution 1
Let
Let
Applying cosine rule to
we get:
Substituting
we get:
From above,
Thus,
So, area of
=
Let
be the altitude of
from
.
So
This implies
.
Since
is a cyclic quadrilateral with
,
is congruent to
.
Similarly
is a cyclic quadrilateral and
is congruent to
.
So area of
+ area of
= area of
.
Thus area of pentagon
= area of
+ area of
+ area of
=
By
Solution 2
Let
. Denote the area of
by
.
can be found by Heron's formula.
Let
.
Total area
.
By durianice