Difference between revisions of "1998 JBMO Problems/Problem 2"
Durianaops (talk | contribs) (→Solution 1) |
Durianaops (talk | contribs) m (→Solution 1) |
||
| Line 18: | Line 18: | ||
Substituting <math>AC^{2} = 1^{2} + a^{2}, AD ^ {2} = 1^{2} + (1-a)^{2}, DC = 1</math> we get: | Substituting <math>AC^{2} = 1^{2} + a^{2}, AD ^ {2} = 1^{2} + (1-a)^{2}, DC = 1</math> we get: | ||
| − | <math>\cos^{2} X = \frac{(1 - a - a ^ {2}) ^ {2}}{ | + | <math>\cos^{2} X = \frac{(1 - a - a ^ {2}) ^ {2}}{(1 + a^{2})(2 - 2a + a^{2})}</math> |
| − | From above, <math>\sin^{2} X = 1 - \cos^{2} X = \frac{1}{ | + | From above, <math>\sin^{2} X = 1 - \cos^{2} X = \frac{1}{(1 + a^{2})(2 - 2a + a^{2})} = \frac{1}{AC^{2} \cdot AD^{2}}</math> |
Thus, <math>\sin X \cdot AC \cdot AD = 1</math> | Thus, <math>\sin X \cdot AC \cdot AD = 1</math> | ||
Revision as of 22:26, 4 June 2020
Problem 2
Let
be a convex pentagon such that
,
and
. Compute the area of the pentagon.
Solutions
Solution 1
Let
Let
Applying cosine rule to
we get:
Substituting
we get:
From above,
Thus,
So, area of
=
Let
be the altitude of
from
.
So
This implies
.
Since
is a cyclic quadrilateral with
,
is congruent to
.
Similarly
is a cyclic quadrilateral and
is congruent to
.
So area of
+ area of
= area of
.
Thus area of pentagon
= area of
+ area of
+ area of
=
By
Solution 2
Let
. Denote the area of
by
.
can be found by Heron's formula.
Let
.
Total area
.
By durianice