Difference between revisions of "2003 AMC 12B Problems/Problem 17"
(→Solution 2) |
(→Solution 2) |
||
| Line 21: | Line 21: | ||
== Solution 2 == | == Solution 2 == | ||
| − | <math>log(xy)+log(y^2)=1 \\ log(xy)+log(x)=1 \text{ subtracting, } \\ log(y^2)-log(x)=0 \\ log \left(\frac{y^2}{x}\right)=0 \\ \frac{y^2}{x}=10^0 \\ y^2=x \\ \text{substitute and solve: } log(y^5)= | + | <math>\log(xy)+\log(y^2)=1 \\ \log(xy)+\log(x)=1 \text{ subtracting, } \\ \log(y^2)-\log(x)=0 \\ \log \left(\frac{y^2}{x}\right)=0 \\ \frac{y^2}{x}=10^0 \\ y^2=x \\ \text{substitute and solve: } \log(y^5)=5\log(y)=1 \\ \text{ and we need } 3\log(y) \text{ which is } \frac{3}{5}</math> |
== See also == | == See also == | ||
Revision as of 21:33, 29 June 2020
Contents
Problem
If
and
, what is
?
Solution
Since
Summing gives
Hence
.
It is not difficult to find
.
Solution 2
See also
| 2003 AMC 12B (Problems • Answer Key • Resources) | |
| Preceded by Problem 16 |
Followed by Problem 18 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.