Difference between revisions of "2006 AMC 10A Problems/Problem 17"
m (→Solution 2) |
Icematrix2 (talk | contribs) |
||
Line 14: | Line 14: | ||
</asy> | </asy> | ||
− | <math>\mathrm{(A) \ } \frac{1}{2}\qquad\mathrm{(B) \ } \frac{\sqrt{2}}{2}\qquad\mathrm{(C) \ } \frac{\sqrt{3}}{2}\qquad\mathrm{(D) | + | <math>\mathrm{(A) \ } \frac{1}{2}\qquad\mathrm{(B) \ } \frac{\sqrt{2}}{2}\qquad\mathrm{(C) \ } \frac{\sqrt{3}}{2}\qquad\mathrm{(D)} \sqrt{2} \qquad\mathrm{(E) \ } \frac{2\sqrt{3}}{3}\qquad</math> |
== Solution == | == Solution == |
Revision as of 23:18, 22 October 2020
Contents
Problem
In rectangle , points
and
trisect
, and points
and
trisect
. In addition,
, and
. What is the area of quadrilateral
shown in the figure?
Solution
Solution 1
Draw .
, so
is a
. Hence
, and
.
There are many different similar ways to come to the same conclusion using different 45-45-90 triangles.
Solution 2
Drawing lines as shown above and piecing together the triangles, we see that is made up of 12 squares congruent to
. Hence
.
Solution 3
We see that if we draw a line to it is half the width of the rectangle so that length would be
, and the resulting triangle is a
so using the Pythagorean Theorem we can get that each side is
so the area of the middle square would be
which is our answer.
Solution 4
Since and
are trisection points and
, we see that
. Also,
, so triangle
is a right isosceles triangle, i.e.
. By symmetry, triangles
,
, and
are also right isosceles triangles. Therefore,
, which means triangle
is also a right isosceles triangle. Also, triangle
is a right isosceles triangle.
Then , and
. Hence,
.
By symmetry, quadrilateral is a square, so its area is
~made by AoPS (somewhere) -put here by qkddud~
See Also
2006 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 16 |
Followed by Problem 18 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.