Difference between revisions of "2021 Fall AMC 10A Problems/Problem 24"
Arcticturn (talk | contribs) (→Solution) |
(→Solution) |
||
| Line 14: | Line 14: | ||
Remark: It is very easy to get disorganized when counting, so when doing this problem, make sure to draw a diagram of the cube. Labeling is a bit harder, since we often confuse one side with another. Try doing the problem by labeling sides on the lines (literally letting the lines pass through your <math>0</math>s and <math>1</math>s.) I found that to be very helpful when solving this problem. | Remark: It is very easy to get disorganized when counting, so when doing this problem, make sure to draw a diagram of the cube. Labeling is a bit harder, since we often confuse one side with another. Try doing the problem by labeling sides on the lines (literally letting the lines pass through your <math>0</math>s and <math>1</math>s.) I found that to be very helpful when solving this problem. | ||
| + | ==Solution== | ||
| + | Since we want the sum of the edges of each face to be <math>2</math>, we need there to be <math>2</math> <math>1</math>s and <math>2</math> <math>0</math>s on each face. Through experimentation, we find that either <math>2, 4,</math> or all of them have <math>1</math>s adjacent to <math>1</math>s and <math>0</math>s adjacent to <math>0</math> on each face. WLOG, let the first face (counterclockwise) be <math>0,0,1,1</math>. In this case we are trying to have all of them be adjacent to each other. First face: <math>0,0,1,1</math>. Second face: <math>2</math> choices: <math>1,0,0,1</math> or <math>0,0,1,1</math>. After that, it is basically forced and everything will fall in to place. Since we assumed WLOG, we need to multiply <math>2</math> by <math>4</math> to get a total of <math>8</math> different arrangements. | ||
| + | |||
| + | Secondly: <math>4</math> of the faces have all of them adjacent and <math>2</math> of the faces do not: WLOG counting counterclockwise, we have <math>0,0,1,1</math>. Then, we choose the other face next to it. There are two cases, which are <math>0,1,0,1</math> and <math>1,0,1,0</math>. Therefore, this subcase has <math>4</math> different arrangements. Then, we can choose the face at front to be <math>1,0,1,0</math>. This has <math>4</math> cases. The sides can either be <math>0,1,1,0</math> or <math>1,1,0,0</math>. Therefore, we have another <math>8</math> cases. | ||
| + | |||
| + | Summing these up, we have <math>8+4+8 = 20</math>. Therefore, our answer is <math>\boxed {\textbf{(E) }20}</math> | ||
| + | |||
| + | ~Arcticturn | ||
| + | |||
| + | Remark: It is very easy to get disorganized when counting, so when doing this problem, make sure to draw a diagram of the cube. Labeling is a bit harder, since we often confuse one side with another. Try doing the problem by labeling sides on the lines (literally letting the lines pass through your <math>0</math>s and <math>1</math>s.) I found that to be very helpful when solving this problem. | ||
| + | |||
| + | ==Solution 2== | ||
| + | <asy> | ||
| + | pair A, B, C, D, E, F, G, H; | ||
| + | A = (0, 0); | ||
| + | B = (12.071,0); | ||
| + | C = (12.071,12.071); | ||
| + | D = (0,12.071); | ||
| + | E = (3.536,3.536); | ||
| + | F = (8.536,3.536); | ||
| + | G = (8.536,8.536); | ||
| + | H = (3.536,8.536); | ||
| + | |||
| + | draw(A--B--C--D--A--E--F--G--H--E--F--B--C--G--H--D); | ||
| + | label("$A$", A, SW); | ||
| + | label("$B$", B, SE); | ||
| + | label("$C$", C, NE); | ||
| + | label("$D$", D, NW); | ||
| + | label("$E$", E, NW); | ||
| + | label("$F$", F, NE); | ||
| + | label("$G$", G, SE); | ||
| + | label("$H$", H, SW); | ||
| + | </asy> | ||
| + | |||
| + | We see that each face has to have 2 1's and 2 0's. We can try all the cases, starting with edges connecting to A. | ||
| + | |||
| + | ===Case 1=== | ||
| + | <asy> | ||
| + | pair A, B, C, D, E, F, G, H; | ||
| + | A = (0, 0); | ||
| + | B = (12.071,0); | ||
| + | C = (12.071,12.071); | ||
| + | D = (0,12.071); | ||
| + | E = (3.536,3.536); | ||
| + | F = (8.536,3.536); | ||
| + | G = (8.536,8.536); | ||
| + | H = (3.536,8.536); | ||
| + | |||
| + | draw(A--B--C--D--A--E--F--G--H--E--F--B--C--G--H--D); | ||
| + | label("$A$", A, SW); | ||
| + | label("$B$", B, SE); | ||
| + | label("$C$", C, NE); | ||
| + | label("$D$", D, NW); | ||
| + | label("$E$", E, NW); | ||
| + | label("$F$", F, NE); | ||
| + | label("$G$", G, SE); | ||
| + | label("$H$", H, SW); | ||
| + | |||
| + | label("$1$", A--B, S); | ||
| + | label("$1$", A--D, W); | ||
| + | label("$1$", A--E, NW); | ||
| + | </asy> | ||
| + | |||
| + | In this case, we can completely fill in the rest of the cube. | ||
| + | |||
| + | <asy> | ||
| + | pair A, B, C, D, E, F, G, H; | ||
| + | A = (0, 0); | ||
| + | B = (12.071,0); | ||
| + | C = (12.071,12.071); | ||
| + | D = (0,12.071); | ||
| + | E = (3.536,3.536); | ||
| + | F = (8.536,3.536); | ||
| + | G = (8.536,8.536); | ||
| + | H = (3.536,8.536); | ||
| + | |||
| + | draw(A--B--C--D--A--E--F--G--H--E--F--B--C--G--H--D); | ||
| + | label("$A$", A, SW); | ||
| + | label("$B$", B, SE); | ||
| + | label("$C$", C, NE); | ||
| + | label("$D$", D, NW); | ||
| + | label("$E$", E, NW); | ||
| + | label("$F$", F, NE); | ||
| + | label("$G$", G, SE); | ||
| + | label("$H$", H, SW); | ||
| + | |||
| + | label("$1$", A--B, S); | ||
| + | label("$0$", B--C, W); // Breaks for some reason when I put it to the east | ||
| + | label("$0$", C--D, N); | ||
| + | label("$1$", D--A, W); | ||
| + | label("$0$", E--F, S); | ||
| + | label("$1$", F--G, W); // Same here | ||
| + | label("$1$", G--H, N); | ||
| + | label("$0$", H--E, W); | ||
| + | label("$1$", A--E, NW); | ||
| + | label("$0$", B--F, NE); | ||
| + | label("$1$", C--G, SE); | ||
| + | label("$0$", D--H, SW); | ||
| + | </asy> | ||
| + | |||
| + | We can see that we choose <math>2</math> diametrically opposite vertices to put <math>3</math> <math>1</math>'s on the connecting edges. As a result, this case has <math>\frac{8}{2}=4</math> orientations. | ||
| + | |||
| + | ===Case 2=== | ||
| + | |||
| + | <asy> | ||
| + | pair A, B, C, D, E, F, G, H; | ||
| + | A = (0, 0); | ||
| + | B = (12.071,0); | ||
| + | C = (12.071,12.071); | ||
| + | D = (0,12.071); | ||
| + | E = (3.536,3.536); | ||
| + | F = (8.536,3.536); | ||
| + | G = (8.536,8.536); | ||
| + | H = (3.536,8.536); | ||
| + | |||
| + | draw(A--B--C--D--A--E--F--G--H--E--F--B--C--G--H--D); | ||
| + | label("$A$", A, SW); | ||
| + | label("$B$", B, SE); | ||
| + | label("$C$", C, NE); | ||
| + | label("$D$", D, NW); | ||
| + | label("$E$", E, NW); | ||
| + | label("$F$", F, NE); | ||
| + | label("$G$", G, SE); | ||
| + | label("$H$", H, SW); | ||
| + | |||
| + | label("$0$", A--B, S); | ||
| + | label("$1$", A--D, W); | ||
| + | label("$1$", A--E, NW); | ||
| + | </asy> | ||
| + | |||
| + | Filling out a bit more, we have: | ||
| + | |||
| + | <asy> | ||
| + | pair A, B, C, D, E, F, G, H; | ||
| + | A = (0, 0); | ||
| + | B = (12.071,0); | ||
| + | C = (12.071,12.071); | ||
| + | D = (0,12.071); | ||
| + | E = (3.536,3.536); | ||
| + | F = (8.536,3.536); | ||
| + | G = (8.536,8.536); | ||
| + | H = (3.536,8.536); | ||
| + | |||
| + | draw(A--B--C--D--A--E--F--G--H--E--F--B--C--G--H--D); | ||
| + | label("$A$", A, SW); | ||
| + | label("$B$", B, SE); | ||
| + | label("$C$", C, NE); | ||
| + | label("$D$", D, NW); | ||
| + | label("$E$", E, NW); | ||
| + | label("$F$", F, NE); | ||
| + | label("$G$", G, SE); | ||
| + | label("$H$", H, SW); | ||
| + | |||
| + | label("$0$", A--B, S); | ||
| + | label("$1$", A--D, W); | ||
| + | label("$1$", A--E, NW); | ||
| + | label("$0$", H--E, W); | ||
| + | label("$0$", D--H, SW); | ||
| + | </asy> | ||
| + | |||
| + | In this case, we have different ways to fill out <math>BC</math> and <math>CD</math> | ||
| + | ====Case 2.1==== | ||
| + | <asy> | ||
| + | pair A, B, C, D, E, F, G, H; | ||
| + | A = (0, 0); | ||
| + | B = (12.071,0); | ||
| + | C = (12.071,12.071); | ||
| + | D = (0,12.071); | ||
| + | E = (3.536,3.536); | ||
| + | F = (8.536,3.536); | ||
| + | G = (8.536,8.536); | ||
| + | H = (3.536,8.536); | ||
| + | |||
| + | draw(A--B--C--D--A--E--F--G--H--E--F--B--C--G--H--D); | ||
| + | label("$A$", A, SW); | ||
| + | label("$B$", B, SE); | ||
| + | label("$C$", C, NE); | ||
| + | label("$D$", D, NW); | ||
| + | label("$E$", E, NW); | ||
| + | label("$F$", F, NE); | ||
| + | label("$G$", G, SE); | ||
| + | label("$H$", H, SW); | ||
| + | |||
| + | label("$0$", A--B, S); | ||
| + | label("$$", B--C, W); // Breaks for some reason when I put it to the east | ||
| + | label("$$", C--D, N); | ||
| + | label("$1$", D--A, W); | ||
| + | label("$0$", E--F, S); | ||
| + | label("$$", F--G, W); // Same here | ||
| + | label("$$", G--H, N); | ||
| + | label("$0$", H--E, W); | ||
| + | label("$1$", A--E, NW); | ||
| + | label("$1$", B--F, NE); | ||
| + | label("$$", C--G, SE); | ||
| + | label("$0$", D--H, SW); | ||
| + | </asy> | ||
| + | |||
| + | This goes to: | ||
| + | |||
| + | <asy> | ||
| + | pair A, B, C, D, E, F, G, H; | ||
| + | A = (0, 0); | ||
| + | B = (12.071,0); | ||
| + | C = (12.071,12.071); | ||
| + | D = (0,12.071); | ||
| + | E = (3.536,3.536); | ||
| + | F = (8.536,3.536); | ||
| + | G = (8.536,8.536); | ||
| + | H = (3.536,8.536); | ||
| + | |||
| + | draw(A--B--C--D--A--E--F--G--H--E--F--B--C--G--H--D); | ||
| + | label("$A$", A, SW); | ||
| + | label("$B$", B, SE); | ||
| + | label("$C$", C, NE); | ||
| + | label("$D$", D, NW); | ||
| + | label("$E$", E, NW); | ||
| + | label("$F$", F, NE); | ||
| + | label("$G$", G, SE); | ||
| + | label("$H$", H, SW); | ||
| + | |||
| + | label("$0$", A--B, S); | ||
| + | label("$0$", B--C, W); // Breaks for some reason when I put it to the east | ||
| + | label("$1$", C--D, N); | ||
| + | label("$1$", D--A, W); | ||
| + | label("$0$", E--F, S); | ||
| + | label("$1$", F--G, W); // Same here | ||
| + | label("$1$", G--H, N); | ||
| + | label("$0$", H--E, W); | ||
| + | label("$1$", A--E, NW); | ||
| + | label("$1$", B--F, NE); | ||
| + | label("$0$", C--G, SE); | ||
| + | label("$0$", D--H, SW); | ||
| + | </asy> | ||
| + | |||
| + | ====Case 2.2==== | ||
| + | <asy> | ||
| + | pair A, B, C, D, E, F, G, H; | ||
| + | A = (0, 0); | ||
| + | B = (12.071,0); | ||
| + | C = (12.071,12.071); | ||
| + | D = (0,12.071); | ||
| + | E = (3.536,3.536); | ||
| + | F = (8.536,3.536); | ||
| + | G = (8.536,8.536); | ||
| + | H = (3.536,8.536); | ||
| + | |||
| + | draw(A--B--C--D--A--E--F--G--H--E--F--B--C--G--H--D); | ||
| + | label("$A$", A, SW); | ||
| + | label("$B$", B, SE); | ||
| + | label("$C$", C, NE); | ||
| + | label("$D$", D, NW); | ||
| + | label("$E$", E, NW); | ||
| + | label("$F$", F, NE); | ||
| + | label("$G$", G, SE); | ||
| + | label("$H$", H, SW); | ||
| + | |||
| + | label("$0$", A--B, S); | ||
| + | label("$$", B--C, W); // Breaks for some reason when I put it to the east | ||
| + | label("$$", C--D, N); | ||
| + | label("$1$", D--A, W); | ||
| + | label("$1$", E--F, S); | ||
| + | label("$$", F--G, W); // Same here | ||
| + | label("$$", G--H, N); | ||
| + | label("$0$", H--E, W); | ||
| + | label("$1$", A--E, NW); | ||
| + | label("$0$", B--F, NE); | ||
| + | label("$$", C--G, SE); | ||
| + | label("$0$", D--H, SW); | ||
| + | </asy> | ||
| + | |||
| + | Oh no... We have 2 ways to go from here. More casework! | ||
| + | |||
| + | =====Case 2.2.1===== | ||
| + | |||
| + | <asy> | ||
| + | pair A, B, C, D, E, F, G, H; | ||
| + | A = (0, 0); | ||
| + | B = (12.071,0); | ||
| + | C = (12.071,12.071); | ||
| + | D = (0,12.071); | ||
| + | E = (3.536,3.536); | ||
| + | F = (8.536,3.536); | ||
| + | G = (8.536,8.536); | ||
| + | H = (3.536,8.536); | ||
| + | |||
| + | draw(A--B--C--D--A--E--F--G--H--E--F--B--C--G--H--D); | ||
| + | label("$A$", A, SW); | ||
| + | label("$B$", B, SE); | ||
| + | label("$C$", C, NE); | ||
| + | label("$D$", D, NW); | ||
| + | label("$E$", E, NW); | ||
| + | label("$F$", F, NE); | ||
| + | label("$G$", G, SE); | ||
| + | label("$H$", H, SW); | ||
| + | |||
| + | label("$0$", A--B, S); | ||
| + | label("$$", B--C, W); // Breaks for some reason when I put it to the east | ||
| + | label("$$", C--D, N); | ||
| + | label("$1$", D--A, W); | ||
| + | label("$1$", E--F, S); | ||
| + | label("$1$", F--G, W); // Same here | ||
| + | label("$0$", G--H, N); | ||
| + | label("$0$", H--E, W); | ||
| + | label("$1$", A--E, NW); | ||
| + | label("$0$", B--F, NE); | ||
| + | label("$$", C--G, SE); | ||
| + | label("$0$", D--H, SW); | ||
| + | </asy> | ||
| + | |||
| + | This goes to: | ||
| + | |||
| + | <asy> | ||
| + | pair A, B, C, D, E, F, G, H; | ||
| + | A = (0, 0); | ||
| + | B = (12.071,0); | ||
| + | C = (12.071,12.071); | ||
| + | D = (0,12.071); | ||
| + | E = (3.536,3.536); | ||
| + | F = (8.536,3.536); | ||
| + | G = (8.536,8.536); | ||
| + | H = (3.536,8.536); | ||
| + | |||
| + | draw(A--B--C--D--A--E--F--G--H--E--F--B--C--G--H--D); | ||
| + | label("$A$", A, SW); | ||
| + | label("$B$", B, SE); | ||
| + | label("$C$", C, NE); | ||
| + | label("$D$", D, NW); | ||
| + | label("$E$", E, NW); | ||
| + | label("$F$", F, NE); | ||
| + | label("$G$", G, SE); | ||
| + | label("$H$", H, SW); | ||
| + | |||
| + | label("$0$", A--B, S); | ||
| + | label("$0$", B--C, W); // Breaks for some reason when I put it to the east | ||
| + | label("$1$", C--D, N); | ||
| + | label("$1$", D--A, W); | ||
| + | label("$1$", E--F, S); | ||
| + | label("$1$", F--G, W); // Same here | ||
| + | label("$0$", G--H, N); | ||
| + | label("$0$", H--E, W); | ||
| + | label("$1$", A--E, NW); | ||
| + | label("$0$", B--F, NE); | ||
| + | label("$1$", C--G, SE); | ||
| + | label("$0$", D--H, SW); | ||
| + | </asy> | ||
| + | |||
| + | We can see that this is just case 1, but with the <math>1</math>'s flipped to <math>0</math>'s, and vice versa. Therefore, this should also have <math>4</math> Orientations. | ||
| + | |||
| + | =====Case 2.2.2===== | ||
| + | |||
| + | <asy> | ||
| + | pair A, B, C, D, E, F, G, H; | ||
| + | A = (0, 0); | ||
| + | B = (12.071,0); | ||
| + | C = (12.071,12.071); | ||
| + | D = (0,12.071); | ||
| + | E = (3.536,3.536); | ||
| + | F = (8.536,3.536); | ||
| + | G = (8.536,8.536); | ||
| + | H = (3.536,8.536); | ||
| + | |||
| + | draw(A--B--C--D--A--E--F--G--H--E--F--B--C--G--H--D); | ||
| + | label("$A$", A, SW); | ||
| + | label("$B$", B, SE); | ||
| + | label("$C$", C, NE); | ||
| + | label("$D$", D, NW); | ||
| + | label("$E$", E, NW); | ||
| + | label("$F$", F, NE); | ||
| + | label("$G$", G, SE); | ||
| + | label("$H$", H, SW); | ||
| + | |||
| + | label("$0$", A--B, S); | ||
| + | label("$$", B--C, W); // Breaks for some reason when I put it to the east | ||
| + | label("$$", C--D, N); | ||
| + | label("$1$", D--A, W); | ||
| + | label("$1$", E--F, S); | ||
| + | label("$0$", F--G, W); // Same here | ||
| + | label("$1$", G--H, N); | ||
| + | label("$0$", H--E, W); | ||
| + | label("$1$", A--E, NW); | ||
| + | label("$0$", B--F, NE); | ||
| + | label("$$", C--G, SE); | ||
| + | label("$0$", D--H, SW); | ||
| + | </asy> | ||
| + | |||
| + | This goes to: | ||
| + | |||
| + | <asy> | ||
| + | pair A, B, C, D, E, F, G, H; | ||
| + | A = (0, 0); | ||
| + | B = (12.071,0); | ||
| + | C = (12.071,12.071); | ||
| + | D = (0,12.071); | ||
| + | E = (3.536,3.536); | ||
| + | F = (8.536,3.536); | ||
| + | G = (8.536,8.536); | ||
| + | H = (3.536,8.536); | ||
| + | |||
| + | draw(A--B--C--D--A--E--F--G--H--E--F--B--C--G--H--D); | ||
| + | label("$A$", A, SW); | ||
| + | label("$B$", B, SE); | ||
| + | label("$C$", C, NE); | ||
| + | label("$D$", D, NW); | ||
| + | label("$E$", E, NW); | ||
| + | label("$F$", F, NE); | ||
| + | label("$G$", G, SE); | ||
| + | label("$H$", H, SW); | ||
| + | |||
| + | label("$0$", A--B, S); | ||
| + | label("$0$", B--C, W); // Breaks for some reason when I put it to the east | ||
| + | label("$1$", C--D, N); | ||
| + | label("$1$", D--A, W); | ||
| + | label("$1$", E--F, S); | ||
| + | label("$1$", F--G, W); // Same here | ||
| + | label("$0$", G--H, N); | ||
| + | label("$0$", H--E, W); | ||
| + | label("$1$", A--E, NW); | ||
| + | label("$0$", B--F, NE); | ||
| + | label("$1$", C--G, SE); | ||
| + | label("$0$", D--H, SW); | ||
| + | </asy> | ||
| + | |||
| + | We can see that this is just case 1, but with the <math>1</math>'s flipped to <math>0</math>'s, and vice versa. Therefore, this should also have <math>4</math> Orientations. | ||
==See Also== | ==See Also== | ||
{{AMC10 box|year=2021 Fall|ab=A|num-b=23|num-a=25}} | {{AMC10 box|year=2021 Fall|ab=A|num-b=23|num-a=25}} | ||
{{MAA Notice}} | {{MAA Notice}} | ||
Revision as of 01:25, 2 December 2021
Contents
Problem
Each of the
edges of a cube is labeled
or
. Two labelings are considered different even if one can be obtained from the other by a sequence of one or more rotations and/or reflections. For how many such labelings is the sum of the labels on the edges of each of the
faces of the cube equal to
?
Solution
Since we want the sum of the edges of each face to be
, we need there to be
s and
s on each face. Through experimentation, we find that either four of them or all of them have
s adjacent to
s and
s adjacent to
on each face. WLOG, let the first face (counterclockwise) be
. In this case we are trying to have all of them be adjacent to each other. First face:
. Second face:
choices:
or
. After that, it is basically forced and everything will fall in to place. Since we assumed WLOG, we need to multiply
by
to get a total of
different arrangements.
Secondly:
of the faces have all of them adjacent and
of the faces do not: WLOG counting counterclockwise, we have
. Then, we choose the other face next to it. There are two cases, which are
and
. Therefore, this subcase has
different arrangements. Then, we can choose the face at front to be
. This has
cases. The sides can either be
or
. Therefore, we have another
cases.
Summing these up, we have
. Therefore, our answer is
~Arcticturn
Remark: It is very easy to get disorganized when counting, so when doing this problem, make sure to draw a diagram of the cube. Labeling is a bit harder, since we often confuse one side with another. Try doing the problem by labeling sides on the lines (literally letting the lines pass through your
s and
s.) I found that to be very helpful when solving this problem.
Solution
Since we want the sum of the edges of each face to be
, we need there to be
s and
s on each face. Through experimentation, we find that either
or all of them have
s adjacent to
s and
s adjacent to
on each face. WLOG, let the first face (counterclockwise) be
. In this case we are trying to have all of them be adjacent to each other. First face:
. Second face:
choices:
or
. After that, it is basically forced and everything will fall in to place. Since we assumed WLOG, we need to multiply
by
to get a total of
different arrangements.
Secondly:
of the faces have all of them adjacent and
of the faces do not: WLOG counting counterclockwise, we have
. Then, we choose the other face next to it. There are two cases, which are
and
. Therefore, this subcase has
different arrangements. Then, we can choose the face at front to be
. This has
cases. The sides can either be
or
. Therefore, we have another
cases.
Summing these up, we have
. Therefore, our answer is
~Arcticturn
Remark: It is very easy to get disorganized when counting, so when doing this problem, make sure to draw a diagram of the cube. Labeling is a bit harder, since we often confuse one side with another. Try doing the problem by labeling sides on the lines (literally letting the lines pass through your
s and
s.) I found that to be very helpful when solving this problem.
Solution 2
We see that each face has to have 2 1's and 2 0's. We can try all the cases, starting with edges connecting to A.
Case 1
In this case, we can completely fill in the rest of the cube.
We can see that we choose
diametrically opposite vertices to put
's on the connecting edges. As a result, this case has
orientations.
Case 2
Filling out a bit more, we have:
In this case, we have different ways to fill out
and
Case 2.1
This goes to:
Case 2.2
Oh no... We have 2 ways to go from here. More casework!
Case 2.2.1
This goes to:
We can see that this is just case 1, but with the
's flipped to
's, and vice versa. Therefore, this should also have
Orientations.
Case 2.2.2
This goes to:
We can see that this is just case 1, but with the
's flipped to
's, and vice versa. Therefore, this should also have
Orientations.
See Also
| 2021 Fall AMC 10A (Problems • Answer Key • Resources) | ||
| Preceded by Problem 23 |
Followed by Problem 25 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.