Difference between revisions of "2014 AMC 8 Problems/Problem 21"
m (→Solution 2) |
Belindazhu13 (talk | contribs) m (→Solution 2) |
||
Line 11: | Line 11: | ||
==Solution 2== | ==Solution 2== | ||
− | Since both numbers are divisible by 3, the sum of their digits has to be divisible by three. <math>7 + 4 + 5 + 2 + 1 = 19</math>. | + | Since both numbers are divisible by 3, the sum of their digits has to be divisible by three. <math>7 + 4 + 5 + 2 + 1 = 19</math>. To be a multiple of <math>3</math>, <math>A + B</math> has to be either <math>2</math> or <math>5</math> or <math>8</math>... and so on. We add up the numerical digits in the second number; <math>3 + 2 + 6 + 4 = 15</math>. We then add two of the selected values, <math>5</math> to <math>15</math>, to get <math>20</math>. We then see that C = <math>1, 4</math> or <math>7, 10</math>... and so on, otherwise the number will not be divisible by three. We then add <math>8</math> to <math>15</math>, to get <math>23</math>, which shows us that C = <math>1</math> or <math>4</math> or <math>7</math>... and so on. To be a multiple of three, we select a few of the common numbers we got from both these equations, which could be <math>1, 4,</math> and <math>7</math>. However, in the answer choices, there is no <math>7</math> or <math>4</math> or anything greater than <math>7</math>, but there is a <math>1</math>, so <math>\boxed{\textbf{(A) }1}</math> is our answer. |
==See Also== | ==See Also== |
Revision as of 17:28, 23 December 2021
Problem
The -digit numbers
and
are each multiples of
. Which of the following could be the value of
?
Video Solution
https://youtu.be/6xNkyDgIhEE?t=2593
Solution 1
The sum of a number's digits is congruent to the number
.
must be congruent to 0, since it is divisible by 3. Therefore,
is also congruent to 0.
, so
. As we know,
, so
, and therefore
. We can substitute 2 for
, so
, and therefore
. This means that C can be 1, 4, or 7, but the only one of those that is an answer choice is
.
Solution 2
Since both numbers are divisible by 3, the sum of their digits has to be divisible by three. . To be a multiple of
,
has to be either
or
or
... and so on. We add up the numerical digits in the second number;
. We then add two of the selected values,
to
, to get
. We then see that C =
or
... and so on, otherwise the number will not be divisible by three. We then add
to
, to get
, which shows us that C =
or
or
... and so on. To be a multiple of three, we select a few of the common numbers we got from both these equations, which could be
and
. However, in the answer choices, there is no
or
or anything greater than
, but there is a
, so
is our answer.
See Also
2014 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 20 |
Followed by Problem 22 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.
Another solution is using the divisbility rule of 3. Just add the digits of each number together.