Difference between revisions of "2019 AIME I Problems/Problem 13"
Line 74: | Line 74: | ||
==Solution 4 (No <C = <DFE, no LoC)== | ==Solution 4 (No <C = <DFE, no LoC)== | ||
Let <math>P=AE\cap CF</math>. Let <math>CP=5x</math> and <math>BP=5y</math>; from <math>\triangle{CBP}\sim\triangle{EFP}</math> we have <math>EP=7x</math> and <math>FP=7y</math>. From <math>\triangle{CAP}\sim\triangle{DFP}</math> we have <math>\frac{6}{4+5y}=\frac{2}{7y}</math> giving <math>y=\frac{1}{4}</math>. So <math>BP=\frac{5}{4}</math> and <math>FP=\frac{7}{4}</math>. These similar triangles also gives us <math>DP=\frac{5}{3}x</math> so <math>DE=\frac{16}{3}x</math>. Now, Stewart's Theorem on <math>\triangle{FEP}</math> and cevian <math>FD</math> tells us that <cmath>\frac{560}{9}x^3+28x=\frac{49}{3}x+\frac{245}{3}x,</cmath>so <math>x=\frac{3\sqrt{2}}{4}</math>. Then <math>BE=\frac{5}{4}+7x=\frac{5+21\sqrt{2}}{4}</math> so the answer is <math>\boxed{032}</math> as desired. (Solution by Trumpeter, but not added to the Wiki by Trumpeter) | Let <math>P=AE\cap CF</math>. Let <math>CP=5x</math> and <math>BP=5y</math>; from <math>\triangle{CBP}\sim\triangle{EFP}</math> we have <math>EP=7x</math> and <math>FP=7y</math>. From <math>\triangle{CAP}\sim\triangle{DFP}</math> we have <math>\frac{6}{4+5y}=\frac{2}{7y}</math> giving <math>y=\frac{1}{4}</math>. So <math>BP=\frac{5}{4}</math> and <math>FP=\frac{7}{4}</math>. These similar triangles also gives us <math>DP=\frac{5}{3}x</math> so <math>DE=\frac{16}{3}x</math>. Now, Stewart's Theorem on <math>\triangle{FEP}</math> and cevian <math>FD</math> tells us that <cmath>\frac{560}{9}x^3+28x=\frac{49}{3}x+\frac{245}{3}x,</cmath>so <math>x=\frac{3\sqrt{2}}{4}</math>. Then <math>BE=\frac{5}{4}+7x=\frac{5+21\sqrt{2}}{4}</math> so the answer is <math>\boxed{032}</math> as desired. (Solution by Trumpeter, but not added to the Wiki by Trumpeter) | ||
+ | |||
+ | ==Solution 5== | ||
+ | Connect <math>CF</math> meeting <math>AE</math> at <math>J</math>. We can observe that <math>\triangle{ACJ}\sim \triangle{FJD}</math> Getting that <math>\frac{AJ}{FJ}=\frac{AC}{FD}=3</math>. We can also observe that <math>\triangle{CBJ}\sim \triangle{EFJ}</math>, getting that <math>\frac{CB}{EF}=\frac{BJ}{FJ}=\frac{CJ}{EJ}=\frac{5}{7}</math> | ||
+ | |||
+ | Assume that <math>BJ=5x;FJ=7x</math>, since <math>\frac{AJ}{FJ}=3</math>, we can get that <math>\frac{AJ}{FJ}=\frac{AB+BJ}{FJ}=\frac{4+5x}{7x}=3</math>, getting that <math>x=\frac{1}{4}; BJ=\frac{5}{4}; FJ=\frac{7}{4}</math> | ||
+ | |||
+ | Using Power of Point, we can get that <math>BJ * EJ=CJ*FJ; DJ * AJ=CJ * FJ</math> Assume that <math>DJ=5k,CJ=15k</math>, getting that <math>JE=21k, DE=16k</math> | ||
+ | |||
+ | Now applying Law of Cosine on two triangles, <math>\triangle{ACJ};\triangle{FJE}</math> separately, we can get two equations | ||
+ | |||
+ | <math>(1): (15k)^2+(\frac{21}{4})^2-2*15k *\frac{21}{4} * cos\angle{CJA}=36</math> | ||
+ | |||
+ | <math>(2):(21k)^2+(\frac{7}{4})^2-2*\frac{7}{4} * 21k*cos\angle{FJE}=49</math> | ||
+ | |||
+ | Since <math>\angle{CJA}=\angle{FJE}</math>, we can use <math>15(2)-7(1)</math> to eliminate the <math>cos</math> term | ||
+ | |||
+ | Then we can get that <math>5040k^2=630</math>, getting <math>k=\frac{\sqrt{2}}{4}</math> | ||
+ | |||
+ | <math>BE=21k=\frac{21\sqrt{2}}{4}; BJ=\frac{5}{4}</math>, so the desired answer is <math>\frac{21\sqrt{2}+5}{4}</math>, which leads to the answer <math>\boxed{32}</math> | ||
+ | |||
+ | ~bluesoul | ||
==See Also== | ==See Also== |
Revision as of 22:54, 23 December 2021
Contents
Problem
Triangle has side lengths
,
, and
. Points
and
are on ray
with
. The point
is a point of intersection of the circumcircles of
and
satisfying
and
. Then
can be expressed as
, where
,
,
, and
are positive integers such that
and
are relatively prime, and
is not divisible by the square of any prime. Find
.
Solution 1
Notice that By the Law of Cosines,
Then,
Let
,
, and
. Then,
However, since
,
, but since
,
and the requested sum is
.
(Solution by TheUltimate123)
Solution 2
Define to be the circumcircle of
and
to be the circumcircle of
.
Because of exterior angles,
But because
is cyclic. In addition,
because
is cyclic. Therefore,
. But
, so
. Using Law of Cosines on
, we can figure out that
. Since
,
. We are given that
and
, so we can use Law of Cosines on
to find that
.
Let be the intersection of segment
and
. Using Power of a Point with respect to
within
, we find that
. We can also apply Power of a Point with respect to
within
to find that
. Therefore,
.
Note that is similar to
.
. Also note that
is similar to
, which gives us
. Solving this system of linear equations, we get
. Now, we can solve for
, which is equal to
. This simplifies to
, which means our answer is
.
Solution 3
Construct and let
. Let
. Using
,
Using
, it can be found that
This also means that
. It suffices to find
. It is easy to see the following:
Using reverse Law of Cosines on
,
. Using Law of Cosines on
gives
, so
.
-franchester
Solution 4 (No <C = <DFE, no LoC)
Let . Let
and
; from
we have
and
. From
we have
giving
. So
and
. These similar triangles also gives us
so
. Now, Stewart's Theorem on
and cevian
tells us that
so
. Then
so the answer is
as desired. (Solution by Trumpeter, but not added to the Wiki by Trumpeter)
Solution 5
Connect meeting
at
. We can observe that
Getting that
. We can also observe that
, getting that
Assume that , since
, we can get that
, getting that
Using Power of Point, we can get that Assume that
, getting that
Now applying Law of Cosine on two triangles, separately, we can get two equations
Since , we can use
to eliminate the
term
Then we can get that , getting
, so the desired answer is
, which leads to the answer
~bluesoul
See Also
2019 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.