Difference between revisions of "2022 AIME I Problems/Problem 11"
Ihatemath123 (talk | contribs) |
|||
| Line 1: | Line 1: | ||
| − | . | + | == Problem == |
| − | == | + | Let <math>ABCD</math> be a parallelogram with <math>\angle BAD < 90^{\circ}</math>. A circle tangent to sides <math>\overline{DA}</math>, <math>\overline{AB}</math>, and <math>\overline{BC}</math> intersects diagonal <math>\overline{AC}</math> at points <math>P</math> and <math>Q</math> with <math>AP < AQ</math>, as shown. Suppose that <math>AP = 3</math>, <math>PQ = 9</math>, and <math>QC = 16</math>. Then the area of <math>ABCD</math> can be expressed in the form <math>m\sqrt n</math>, where <math>m</math> and <math>n</math> are positive integers, and <math>n</math> is not divisible by the square of any prime. Find <math>m+n</math>. |
| + | |||
| + | <asy> | ||
| + | defaultpen(linewidth(0.6)+fontsize(11)); | ||
| + | size(8cm); | ||
| + | pair A,B,C,D,P,Q; | ||
| + | A=(0,0); | ||
| + | label("$A$", A, SW); | ||
| + | B=(6,15); | ||
| + | label("$B$", B, NW); | ||
| + | C=(30,15); | ||
| + | label("$C$", C, NE); | ||
| + | D=(24,0); | ||
| + | label("$D$", D, SE); | ||
| + | P=(5.2,2.6); | ||
| + | label("$P$", (5.8,2.6), N); | ||
| + | Q=(18.3,9.1); | ||
| + | label("$Q$", (18.1,9.7), W); | ||
| + | draw(A--B--C--D--cycle); | ||
| + | draw(C--A); | ||
| + | draw(Circle((10.95,7.45), 7.45)); | ||
| + | dot(A^^B^^C^^D^^P^^Q); | ||
| + | </asy> | ||
| + | |||
| + | ==Solution== | ||
Let the circle tangent to <math>BC,AD,AB</math> at <math>P,Q,M</math> separately, denote that <math>\angle{ABC}=\angle{D}=\alpha</math> | Let the circle tangent to <math>BC,AD,AB</math> at <math>P,Q,M</math> separately, denote that <math>\angle{ABC}=\angle{D}=\alpha</math> | ||
| Line 7: | Line 31: | ||
Now applying LOC in <math>\triangle{ADC}</math>, getting <math>(6+x)^2+400-2(6+x)*20*\frac{2x-12}{2x+12}=(3+9+16)^2</math>, solving this equation to get <math>x=\frac{9}{2}</math>, then <math>\cos\alpha=-\frac{1}{7}</math>, <math>\sin\alpha=\frac{4\sqrt{3}}{7}</math>, the area is <math>\frac{21}{2}*\frac{49}{2}*\frac{4\sqrt{3}}{7}=147\sqrt{3}</math> leads to <math>\boxed{150}</math> | Now applying LOC in <math>\triangle{ADC}</math>, getting <math>(6+x)^2+400-2(6+x)*20*\frac{2x-12}{2x+12}=(3+9+16)^2</math>, solving this equation to get <math>x=\frac{9}{2}</math>, then <math>\cos\alpha=-\frac{1}{7}</math>, <math>\sin\alpha=\frac{4\sqrt{3}}{7}</math>, the area is <math>\frac{21}{2}*\frac{49}{2}*\frac{4\sqrt{3}}{7}=147\sqrt{3}</math> leads to <math>\boxed{150}</math> | ||
| + | |||
| + | ==See Also== | ||
| + | {{AIME box|year=2022|n=I|num-b=10|num-a=12}} | ||
| + | {{MAA Notice}} | ||
Revision as of 20:23, 17 February 2022
Problem
Let
be a parallelogram with
. A circle tangent to sides
,
, and
intersects diagonal
at points
and
with
, as shown. Suppose that
,
, and
. Then the area of
can be expressed in the form
, where
and
are positive integers, and
is not divisible by the square of any prime. Find
.
Solution
Let the circle tangent to
at
separately, denote that
Using POP, it is very clear that
, let
, using LOC in
,
, similarly, use LOC in
, getting that
. We use the second equation to minus the first equation, getting that
, we can get
.
Now applying LOC in
, getting
, solving this equation to get
, then
,
, the area is
leads to
See Also
| 2022 AIME I (Problems • Answer Key • Resources) | ||
| Preceded by Problem 10 |
Followed by Problem 12 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.